

The second generation scanning proton gantry at PSI

Center for Proton Therapy Paul Scherrer Institute

5232 Villigen-PSI SWITZERLAND

<u>E. Pedroni</u> D. Meer, C. Bula, S. Zenklusen, S. Lin S. Safai, R. Kobler, any many others

PTCOG October 5, 2009

E. Pedroni CPT - Paul Scherrer Institute - PTCOG Heidelberg 05-10-2009

The framework – The PROSCAN project at PSI

- Dedicated superconducting cyclotron COMET
- <u>Gantry 1</u> scanning patients since 1996
- Horizontal beam line for <u>OPTIS 2</u>
- Next generation scanning gantry : <u>Gantry 2</u>

- no shut-downs since August 07
- 1. patients in 2009 higher priority
- 1. patient planned for end of 2010

Innovation 1 - Easy access to the iso-center

(0° 180° sufficient)

- Gantry rotation limited to -30° to + 180°
- Beam delivery flexibility by rotating the table in the horizontal plane
 - Analogy with longitude and latitude in the world-geography

- Expected advantages:
- <u>Fixed floor</u> for a better access to the patient table
 - Nobody (patient or personnel) falling in the gantry pit
- <u>Fixed walls</u> for mounting supervision equipment like Vision-RT
- <u>Large access</u> space in front of the gantry for mounting commercial equipment
 - Like a sliding CT ...

Innovation 2 - In-room positioning with sliding-CT

- Within reach of the patient table
 - Installing a sliding CT of Siemens

- Same data as for treatment planning
 - No DRR
- Same table
 - No bending corrections
- Use of time-resolved images
 (4d) before (and after)
 treatment
 - Correct for intra-fraction motion
 - Adapt field to the organ situation of the day (soft tissues)
 - Setup and checks for respiration gating

Innovation 3 - BEV X-rays

- Retractable support with a flat panel
- X-ray tube on beam axis
 - Shining through a hole in the yoke of the 90° bending magnet
- For simultaneous use to proton beam delivery

- Allows imaging with small air gap
 - Patient very close to the nozzle exit
- Use of a single image in the beam direction
 - Instead of reconstructing from 2 tilted images

05-10-2009

BEV: expected advantages ... and problems

- BEV imaging an equivalent of portal imaging with photons
 - Very large field-of-view (26 cm x 16 cm) not masked by equipment or collimators in the beam path

Innovation 4 – A compact optimized nozzle

- Vacuum "up to the patient"
 - Sharp pencil beam 3 mm sigma
- Two monitors and a strip monitor
 - 2 mm strips (delivered by TERA collaboration)
- Removable pre-absorbe P54
 - IN and OUT of beam (moto S. Giordanengo
 - For ranges below 4 10 cm
- Telescopic motion of the nozzle
 - To reduce air gap (keep patient at isocenter)
- Option to add collimator and compensators
 - To shield OAR on top of scanning
 - To simulate passive scattering with a scanning beam
- Collision protection to treat patients remotely (multiple fields in one go)
 - Field patching

<image>

Breaking of vacuum window tested Sound measured below tolerance - if nozzle closed

Innovation 5 - Fast changes of the beam energy

PAUL SCHERRER INSTITUT

- **Continuous choice of the beam energy**
 - Setting all elements of the whole beam line within a single command (from steering file to MCR)
- **Constant beam transmission from COMET to gantry**
 - "Compensation" of degrader losses from 100 to 200 MeV
- **Fast energy changes**
 - Cyclotron (fixed energy)
 - Fast degrader ahead of the gantry
 - The beam line follows the energy variations in the degrader
- Shown
 - 80 ms dead time for small range steps of 5 mm

P64

Time pattern of main scanning devices of a scan of a 65 mm dose box (2940 Spots)

Needs to take into account hysteresis effects ...

- Fixed magnetic ramping (100-230 MeV) En
 - Red: up-down
 - Blue: down-up
- e. qown-nu
- Energy setting
 - Red: tunes with wrong ramp
 - Blue: right order of ramp

Innovation 6 - Double parallel scanning

Fast parallel lateral scanning

- T sweeper 2 cm/ms
- U sweeper 0.5 cm/ms
- Scan area of 12 by 20 cm
 - Plus motion of patient table for treating larger field sizes
 - Experience with Gantry 1
- Parallelism
 - <u>Table used as a sweeper-offset</u>
 - Simplify
 - Treatment planning
 - Field patching
 - Errors from compensators
 - Dosimetry

Well focused beam for all energies...

E. Pedroni CPT - Paul Scherrer Institute - PTCOG Heidelberg 05-10-2009

Innovation 7 - Vertical deflector plate (COMET)

- Dynamic use of the modulation of the beam intensity
 - Deflector plate and vertical collimators in the first beam turn after the ion source
 - Time delay to extracted beam in the order of 100 us —
- Example
 - Delivery of line segments with changing voltages on the deflector plate
 - "Pulsing beam"

Innovation 8 - A very flexible control system

- Steering file for combined delivery of
 - Spots
 - Spot scanning as the default (starting) mode
 - Lines
 - For maximum repainting number and simulated scattering
 - Contours?
 - For optimizing repainting and lateral fall-off (difference Gaussian to error-function)
- Passive scattering

Innovation 9 - Tabulated dose delivery with FPGA

- Combined tabulated control of
 - <u>U-sweeper</u>
 - <u>T-sweeper</u>
 - Beam intensity
 - As a function of **time**

Example 1 – U T meander path

Example 2 - Dose box with continuous scanning 494 energy layers (85 ms per layer) (6 x 8 cm) in less than 1 minute

Innovation 10: Simulated scattering

- Magnetic scanning at max. speed
 - <u>Constant intensity per energy layer</u>
- Dose shaping with collimators an compensators (LEIGHT WEIGHT)
 - BEV shaped layers —
- Very high repainting number
 - Most distal layer (200ms)
 - 88 scans / liter /minutes
- Improved <u>uniform scanning</u>
 - **<u>Simulate scattering</u>** on a scanning-gantry
 - With a **parallel** beam
 - With variable modulation of the range
 - Shrinking shape of layers proximally
 - Part 2 of thesis work of S Zenklusen

Innovation 11 – Fast volumetric repainting

- For conformal scanning and IMPT (without collimators and compensators)
- Painting of <u>lines</u>
 - With maximal possible velocity $\sim 2 \text{ cm} / \text{ms}$, 0.5 cm/ms
 - ...except for those regions where the dose rate are not high enough ...
 - Dose shaping with Beam Intensity Modulation (I.M.)
 - <10 ms per line (10cm + line change)</p>
- Painting of energy iso-layers
 - < 200 ms per plane (20 lines x 5 mm)</p>
 - Change of energy (100 ms 5mm range)
- Repainting of iso-layers
 - ~ 6 s per liter (20 energies at 5mm steps)
- Volumetric repainting capability (aiming at)
 - 10 repaintings / liter in 1 or 2 minutes

Conclusions

• Encouraging results with

- Beam optics (successfully commissioned)
- Small beam spot size
- Double parallel scanning
- Very fast dynamic beam energy changes
- Very fast delivery of energy layers
- Dose control via beam intensity
- Still waiting for
 - Control of patient table and gantry rotation
 - Patient handling equipment

Many thankister the shine of the d colleagues at PSI for their help

Scintillator block - the beam of Gantry 2 seen with a TV camera

and to YOU for the attention

E. Pedroni CPT - Paul Scherrer Institute - PTCOG Heidelberg 05-

05-10-2009