Production of particle beams: Cyclotrons

Marco Schippers

Paul Scherrer Institute

Production of particle beams: cyclotrons, Marco Schippers, PSI

Production of particle beams: cyclotrons

 Dose delivery techniques How does a cyclotron work: -Magnet -lon source -RF -Extraction Very small cyclotrons Cyclotrons for carbon-ions

Dose delivery techniques

Dose delivery techniques: **Depth**

Cyclotron has fixed energy => slow down (degrade) to desired energy

Particle

Therapy Co-

Operative

Energy selection system

Production of particle beams: cyclotrons, Marco Schippers, PSI

The problem in dynamical treatments:

Organ movement

Danger to underdose and overdose

Solutions:

- Beam gating
- Multiple scans of tumor
- Adaptive scanning

⇒increase scan speed laterally + in depth Cyclotron optimal for this

Fast pencil beam scanning

How does a cyclotron work?

Cyclotron as seen by a medical doctor

Particle

Therapy Co-

Operative Group

Cyclotron (1930)

Cyclotron

12 MeV cyclotron (UC, 1940)

PSI Injector 1, 72 MeV, 1970

230 MeV cyclotron (IBA,1996)

Relativity in high-E cyclotrons

 M_0

m =

Remedies when T_{circle} increases with radius:

- 1) decrease f_{RF} with radius.
 - (synchro-cyclotron; pulsed)
- 2) increase B with radius

How to increase field with radius

1) Decrease pole gap at large Radius (IBA)

How to increase field with radius

2) Use SC coils to employ very strong electric current

- \rightarrow very strong magnetic field
- \rightarrow coil field adds to shape of magnetic field (ACCEL / Varian)

Vertical focussing is important

Particles travel 1-2 km

Particle

Therapy Co-

> Operative Group

When B **decreases** with radius: Automatic **vertical stability**

When B increases with radius:

No vertical stability

Particle
Therapy
Co-
Operative
Group

Vertical focussing

Azimuthally Varying Field cyclotron

Main field increases with radius

=> ϕ must also increase to maintain vertical focusing

=> spiral shaped "hills"

250 MeV proton cyclotron (ACCEL/Varian)

Closed He system 4 x 1.5 W @4K

Particle Therapy

Co-

Operative Group

Proton source

superconducting coils => 2.4 - 3.8 T

4 RF-cavities ~100 kV on 4 Dees

Intensity control

Max. intensity set by: + slits proton source Slit position => beam alignment Slit aperture => beam intensit **Beam Intensity** + Vdeflector Deflector plate: sets requested intensity - within 50 μ s - 5% accuracy 20 40 60 Time

RF system

Important parameters: Voltage on Dee Number of Dee's

- \Rightarrow Energy gain per turn
- \Rightarrow Orbit separation
- \Rightarrow Extraction efficiency

resonant extraction

With field bump

Extraction from cyclotron

Self-extraction: Realization by IBA

Small elliptical hill gap \Rightarrow allows for sharp radial gradients 'magnetic septum' \Rightarrow groove machined in the pole

Pole with goove

Extraction from cyclotron

Particle
Therapy
Co-
O perative
Group

beam on/off

Q

Q

Ø

In cyclotron:

- vertical deflector plate → Vmax
- RF → Power off or low
- ion source → off
- mechanical stopper \rightarrow in

- mechanical beam stopper in
- fast kicker magnet

Small cyclotron on a gantry

Proposal of H.Blosser et al., 1989:

-250 MeV -52 tons, on gantry -B(0)=5.5 Tesla

lt m (36 feet) VOBBLE ENERGY SHIFTER 2.0m NOVABLE PIVOT BEARING D . DIPOLE FLOOR Q = QUAD STEEL S=SLIT CONCRETE 250 MeV SYNCHROCYCLOTRON ROTATING SHIELDING DISK SUPPOR

FIG. 9 -- Drawing showing synchrocyclotron rotating gantry arrangement with energy shifting wedge just after the cyclotron. Energy shifting can optionally be accomplished just ahead of the patient. H. Blosser, NSCL (~1990):
cyclotron for neutron therapy;
30 MeV p, mounted on a gantry
Used in Harper Hospital, Detroit

Fig. 2 Photo of the superconducting medical cyclotron on its gantry. Dr. William Powers and

Small cyclotron on a gantry

Small cyclotron => very strong magnetic field

- => iron is saturated ("air like")
- => hills and valeys do not work
- => vertical focussing only by **decreasing** *B*(*r*)
- and: *m* increases with energy (relativity)
- $\Rightarrow T_{circle}$ increases with radius

Remedy:

 \Rightarrow decrease f_{RF} with radius. (synchro cyclotron)

=> pulsed beam (1 kHz)

Still River

Synchro-Cyclotron

8-10 T Synchro-cyclotron on a gantry

Pulsed beam
No scanning
Neutrons ?
Activation ?
No beam analysis
Beam sharpness ?
Reliability ?
(@ limit of current technology)

Carbon-ion cyclotrons

Carbon-ion cyclotrons

Proton (250 MeV)	Helium 2+(α) (250 MeV/nucl)	
Range in wat	ter =38 cm	Ra
2.43 Tm	4.86 Tm	

Carbon 6+ (450 MeV/nucl)

Range in water =33 cm

6.83 Tm

 \Rightarrow For carbon ions cyclotron needs **2.8** times larger radius

 \Rightarrow So ~2.8² = 8 x more iron => 700-800 tons

Synchrotron \emptyset = 25 m + injection Cyclotron \emptyset = 7 m

Archade project

Particle Therapy Co-**Operative**

Group

Catania design 250 → 300 MeV/nucl

Figure 3: Layout of the cyclotron with overdrawn the extraction trajectories by E.D. and by stripper. The E.D. and the M.C. positions are also shown.

LNS CATANIA PROJECT FOR THERAPY AND RADIOISOTOPE PRODUCTION

L.Calabretta, G. Cuttone, M. Re, D. Rifuggiato, LNS-INFN, Catania, Italy M.Maggiore, University of Catania, LNS-INFN, Italy

Cyclotron conference, Tokyo 2004

PSI design for 2-step approach

- Energy + its stability
- Beam size (emittance)
- Beam intensity + stability (kHz) + adjustability (range, speed)
- Extraction efficiency
- Frequency of unplanned beam interrupts
- Start up time after "off" and after "open"
- modular control systems + comprehensive user interface
- Maintenance interval, maintenance time, maintenance effort
- Activation level (person dose per year)
- Ions: time to switch ion species
- Synchro cycl: rep. rate, dose/pulse adjustable (scanning)?

Production of particle beams: cyclotrons, Marco Schippers, PSI

