

Improving ion gantries

Marco Pullia Fondazione CNAO

Present

Only one gantry worldwide: L = 25 m x ϕ = 13 m, 600 t

It has everything, but it is

Very large, very heavy, very expensive

Fixed Isocenter 360° rotation Parallel scanning 200 mm x 200 mm 140 t magnets 120 t shielding-counterweight 600 t total rotating mass

(Udo Weinrich, GSI)

Can we make it better?

- As usual we want everything and its opposite at the same time...
 - Small aperture final magnet to lower power consumption, but scanning upstream
 - Small radius, but space around isocenter
 - Light magnets, but possibly non superconducting

0

• Maximum performance, but cheap

• Scanning or scattering Not really a choice

- Scanning
- SAD and scanning magnets position

Scanning magnets position

 Large aperture dipole: weight and power consumption

 Large gantry radius and large room size

- Scanning
- SAD and scanning magnets position
- 360° vs 180°

360° vs 180°

 By rotating the couch by 180°, all the beam directions are possible also with only 180° of rotation of the gantry

 Saves on room size, but no counterweight opposite to dipole (mechanics and shielding)

- Scanning
- SAD and scanning magnets position
- 360° vs 180°
- Field patching

Field patching

Scan in one go

Scan and move (~PSI gantry I)

Reduces magnet aperture, but Slower procedure and Difficulties somehow similar to simultaneous optimisation of multiple fields with IMPT

- Scanning
- SAD and scanning magnets position
- 360° vs 180°
- Field patching
- Fixed or mobile isocenter

Fixed or mobile isocenter

 Most of the existing gantries have a fixed isocenter on the rotation axis of the gantry. This implies large masses rotating at large radius.

Mobile isocenter

An isocenter, through which all the directions pass, exists but its position depends on gantry orientation.

Mobile isocenter - 2

Patient positioned in a small room "somewhere"

Gantry is longer, than just the last magnet but at small *r*

Carbon ion gantry, 'a la' PSI gantry-I

(M. Kats, 2002)

Considerations

- Shielding: No counterweight on the beam path
- Access to patient
- Shielding: surface of the room
 25x15x15 => 1950 m²
 10x17x17 => 1258 m²
- Room volume (to dig, to cool)
 25x15x15 = 5625 m³
 10x17x17 = 2890 m³
- Smaller masses and masses on axis

- Scanning
- SAD and scanning magnets position
- 360° vs 180°
- Field patching
- Fixed or mobile isocenter
- Multi-room system

M. Pullia - Improving ion gantries - PTCOG 48

15m

(M. Kats)

2 -30<f<30

10m

- Scanning
- SAD and scanning magnets position
- 360° vs 180°
- Field patching
- Fixed or mobile isocenter
- Multi-room system
- Divergent scanning

Divergent scanning

- Last drift 2m SAD 5.5 m (1 plane only!)
- Quad g = 8 T/m Gap reduced by 30%

- Scanning
- SAD and scanning magnets position
- 360° vs 180°
- Field patching
- Fixed or mobile isocenter
- Multi-room system
- Divergent scanning
- Superconducting magnets

Superconducting magnets

If possible no He,

use cryo-coolers

Priano et al, 2001

Straight coil heads Difficult to wind

GFR 200 mm x 60 mm (field patching)

- Scanning
- SAD and scanning magnets position
- 360° vs 180°
- Field patching
- Fixed or mobile isocenter
- Multi-room system
- Divergent scanning
- Superconducting magnets
- FFAG gantry

FFAG Gantry

FFAG Gantry

Direct Wind Combined Function Gantry Magnet

FFAG Gantry

• (complicated) scanning upstream gantry?

Other ideas

. . .

- Active alignment
- Active compensation of magnetic defects (scanning quadrupoles and sextupoles)
- Scanning by moving magnets

Conclusions

- There are margins to improve the present schemes
- There are embrional ideas for new schemes
- There are large margins for compromise solutions and combinations of ideas

