

QA for Scattering Proton Beam

Z. Li, Roelf Slopsema University of Florida Proton Therapy Institute

QA in Radiotherapy:

- AAPM Task Group 100: "Methods for Evaluating QA Needs in Radiotherapy"
 - Identify a structured systematic QA program approach that balances patient safety and quality versus resources commonly available

http://aapm.org/org/structure/default.asp?committee_code=TG100

- QA needs evaluated based on *Likelihood of* Occurrence (O); Severity of Consequences (S); and Likelihood of Detection (D)
- Tests developed for fulfill QA needs henceforth identified
 - Tolerances defined
 - Actions defined for out-of-tolerance test results
- ICRU Report 78 QA section

Acceptance Testing and Commissioning of Proton Therapy

- Vendor-provided acceptance documents
 - Part of purchase agreement
 - Units expected to meet specifications contained in acceptance test document
- AAPM-recommendation on acceptance testing and commissioning of linear accelerators used as general guide
 - Task Group 45 report: "Code of Practice for Radiotherapy Accelerators"
 - Specific tests developed per local expertise

PTI PTS Validation and Commissioning Plan

A higher-level commissioning plan was formed

- Measurements defined and refined for each part
- Based on analysis of system design and dosimetric characteristics (see Monday's presentation)

The commissioning of the PT system is subdivided in the following parts:

- 1. Safety: Indicators, interlocks, surveys (x-ray tubes, neutron exposure, activation)
- 2. Alignment: Mechanical components, X-ray image guidance system
- 3. Dosimetry: Absolute calibrations, monitor chambers, relative dosimetry, test of ConvAlgo parameters
- 4. Treatment Planning: Eclipse required measurements, AP/RC, inhomogeneities
- 5. System Integration: Eclipse => MOSAIQ => PTS, AP/RC fabrication and fitting, DIPS correction application, etc
- 6. Training and Mock Treatments: Establish clinical flow.
- PTCOG48] 7. Documentation and procedure development.

Estimated Proton Gantry 1 Commissioning Timeline

	Measurements & Tests		Analysis & Treatment Planning		
Type of measurements	Total duration [h]	Total duration [weeks]	Total duration [h]	Total duration [weeks]	
Pre-liminary beam measurements	11	0.3	5	0.1	
Dose distribution measurements	303	7.6	13	0.3	
Radiation protection measurements	22	0.5	2	0.1	
Commissioning Eclipse	14	0.4	116	2.9	
Alignment validation	20	0.5	0	0.0	
Safety validation	4	0.1	0	0.0	
System Integration and Process Validation	16	0.4	40	1.0	
Training sessions	40	1.0	20	0.5	
Mock treatments	88	2.2	0	0.0	
Total	517	hours	196	hours	
	74	7+2 hour shifts	24	8+2 hour shifts	
	74	one-shift-a-day days	24	one-shift-a-day days	
	14.8	five-days-a-week weeks	4.9	five-days-a-week weeks	
Total commissioning duration	14.8	weeks			
projected start date	4/24/06		actual start date	4/24/06	
projected finish date	8/5/06	actual treatment state date 8/14/0		8/14/06	

Details of Commissioning Plan Duration Week# **Tests & Measurements:** [h] Validation Dose Distribution Measurements 1 5.3 Verification and calibration phantoms а 4/24 **Calibration Detectors** 4.0 h Recording of baseline system data 2.5 to С 4/28 Daily measurement reference field (5 x 3) 3.5 d 3D scans of full-modulation fields - part 1 (48%) 21.5 е QA + overhead 8.3 f Total 45.0 Difference 2 3D scans of full-modulation fields - part 2 (52%) 23.1 а SOBP and output measurements - part 1 (18%) 5/1b 8.4 to Daily measurement reference field (5 x 3) 3.5 С 5/5 d QA + overhead 10.0 Total 45.0 Difference 3 5/8 SOBP and output measurements - part 2 (74%) 35.0 а QA + overhead to b 10.0 5/12 **Total** 45.0

Details of Commissioning Plan continued

4	а	SOBP and output measurement - part 3 (8%)	3.7		
5/15	Eclipse Beam Data Collection				
to	b	Pristine peak measurements	15.2		
5/19	С	Fluence measurements in air (Eclipse data) - part 1	16.1		
	d	QA + overhead	10.0		
		Total	45.0		
5	а	Fluence measurements in air (Eclipse data) - part 2	35.0		
5/22					
to	b	QA + overhead	10.0		
5/26		Total	45.0		
6	а	Fluence measurements in air (Eclipse data) - part 3	35.0		
	b	QA + overhead	10.0		
		Total	45.0		
7	а	Fluence measurements in air (Eclipse data) - part 4	11.4		
		Determination characteristics aperture and compensator			
	b	material	4.8		
ducational	С	Define beam data libraries Eclipse	0.0		

		Hardware Validation & Additional Dose Measurements	
	d	Validation couch movement	2.9
	е	Verification alignment x-ray's, radiation field, setup lasers, light field	14.1
	f	Validation DIPS - part 1	1.8
	g	QA + overhead	10.0
		Total	45.0
8	а	Validation DIPS - part 2	0.7
	b	Dose measurements for varying setups (gantry angle, SSD, snout,) - part 1	34.3
	С	QA + overhead	10.0
		Total	45.0
9	а	Dose measurements for varying setups (gantry angle, SSD, snout,) - part 2	35.0
	b	QA + overhead	10.0
		Total	45.0
10	а	Dose measurements for varying setups (gantry angle, SSD, snout,) - part 3	20.3
	b	Comparison inhomogeneities Eclipse - delivery	8.0
	С	Proton leakage measurements	2.3
	d	Neutron measurements - part 1	4.5
	е	QA + overhead	10.0
		Total	45.0
11	а	Neutron measurements - part 2	14.8
	b	Safety Validation	3.6
	С	System Integration & Proces Validation	16.0
	е	QA + overhead	10.0
		Total	44.4

		Training and Mock Treatments	-
12	а	Training Sessions	40.0
	b	QA + overhead	5.0
		Total	45.0
13	а	Mock Treatments - part 1	40.0
	b	QA + overhead	5.0
		Total	45.0
14	а	Mock Treatments - part 2	40.0
	b	QA + overhead	5.0
		Total	45.0
15	а	Mock Treatments - part 3	8.0
	b	QA + overhead	5.0
		Total	13.0

Commissioning of Gantries 2 and 3

The commissioning of the PT system is subdivided in the following parts:

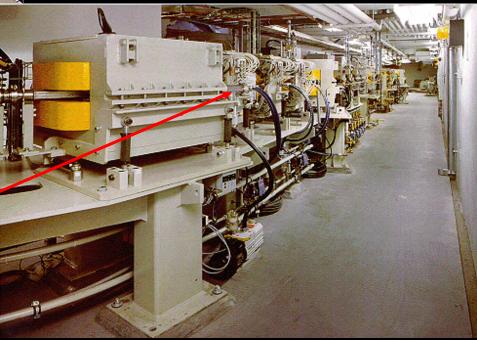
- 1. Safety: Indicators, interlocks, surveys (x-ray tubes, neutron exposure, activation)
- 2. Alignment: Mechanical components, X-ray image guidance system
- 3. Dosimetry: Absolute calibrations, monitor chambers, relative dosimetry, test of ConvAlgo parameters
- 4. Treatment Planning: Eclipse required measurements, AP/RC, inhomogeneities Reduced from commissioning of Gantry 1
- System Integration: Eclipse => MOSAIQ => PTS, AP/RC fabrication and fitting, DIPS correction application, etc Reduced from commissioning of Gantry 1
- 6. Training and Mock Treatments: Establish clinical flow. Eliminated
- 7. Documentation and procedure development. Reduced from commissioning of Gantry 1
- 8. Gantry dedicated to prostate treatments only B8 option commissioned

Design of a periodic proton therapy QA program

- No standards available
- QA needs may be significantly system-specific
 - Scattering beam vs. scanning beam
 - Fixed vs. gantry treatment rooms
 - SOBP generation method
 - Image localization system
 - PPS design
- QA needs may be specific to institutional clinical workflow
 - Use of lasers
 - Use of light field
- Competition of beam time with patient treatment

Design of a periodic proton therapy QA program

- Identifying critical system operating parameters
 - Frequency of QA testing as a function of severity of component failure, as well as its likelihood of failure
 - Tests designed to evaluate functioning of multiple components at the same time where applicable
 - Purpose-built QA devices to improve reproducibility and efficiency of QA measurements (for example, daily QA compensator phantom)
 - Optimize efficiency of QA tests

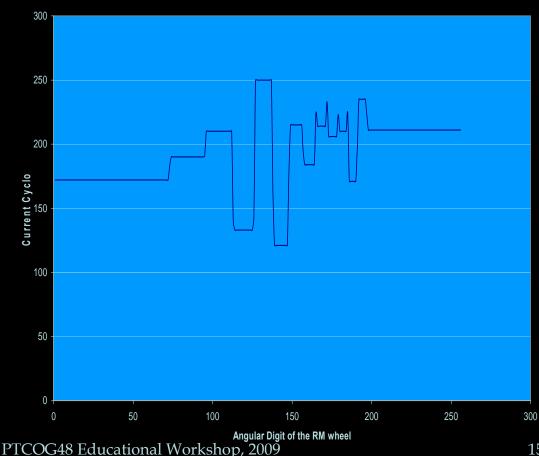

IBA cyclotron and energy selecion system (ESS)

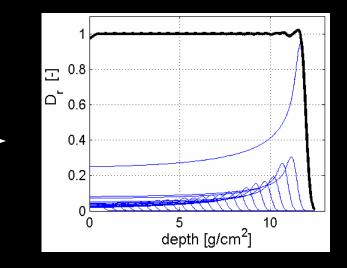
IC_{cyclo} measures beam current and controls beam current modulation

Energy degrader sets beam range Energy selection system eliminates particles outside set range

Beam profile monitors and magnets measures and adjusts beam centering and focusing

Identification of system failure modes – beam line

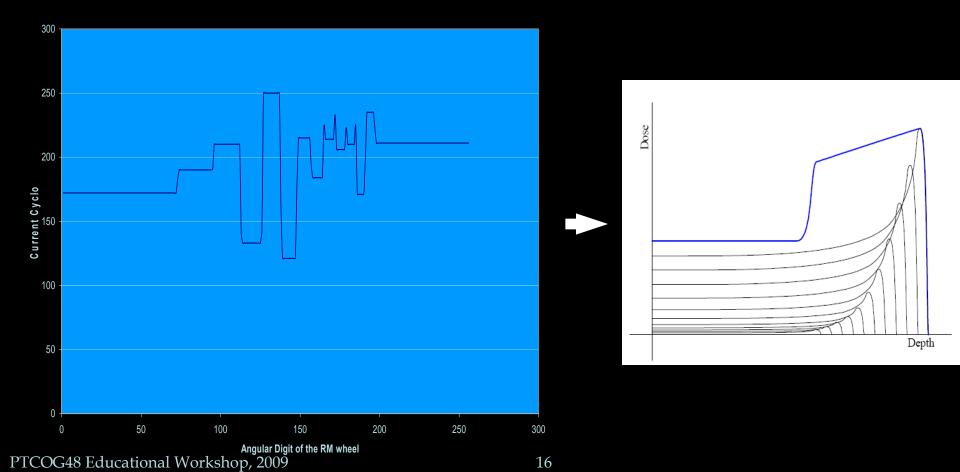

- Potential beam line failure modes
 - Ion chamber at cyclotron exit (IC_{cyclo})
 - SOBP changes due to beam regulation problems
 - Energy Selection System (ESS) drifts
 - Range changes
 - Beam focus and steering
 - Lateral dose profiles
 - Average proton energy
 - Pristine peak width
- Potential Treatment Control System (TCS) failure modes
 - SOBP changes due to errors of Beam Current Modulation (BCM)



Range modulation

- Weights of Bragg Peaks (beam current weights) can be \bullet calculated from range modulation wheel thicknesses.
- However....

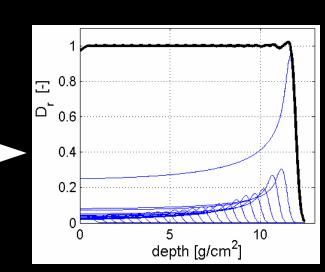
BCMB4 MD



Range modulation

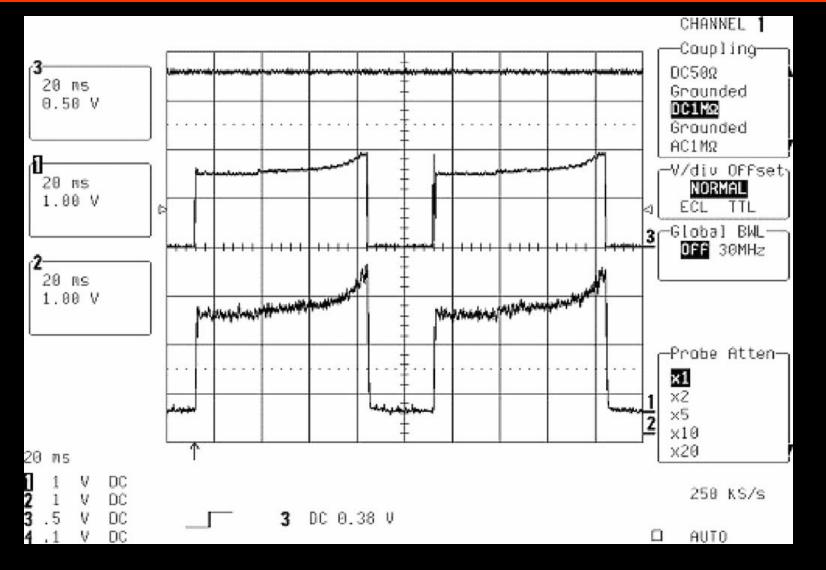
- Physical thicknesses of range modulation wheel steps vary due to manufacturing process.
- Beam current modulation files (BCM) calculated from theoretical thicknesses may not produce flat SOBPs

BCMB4_MD



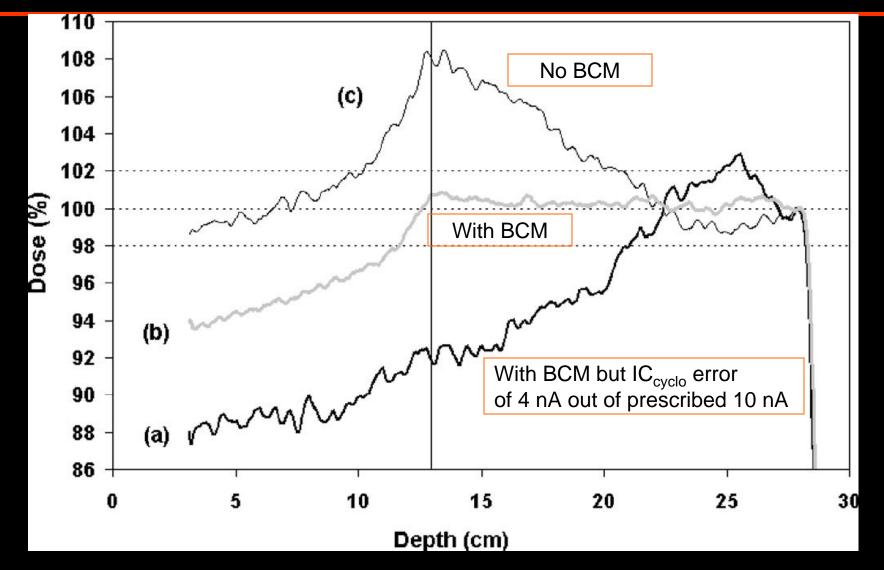
Range modulation

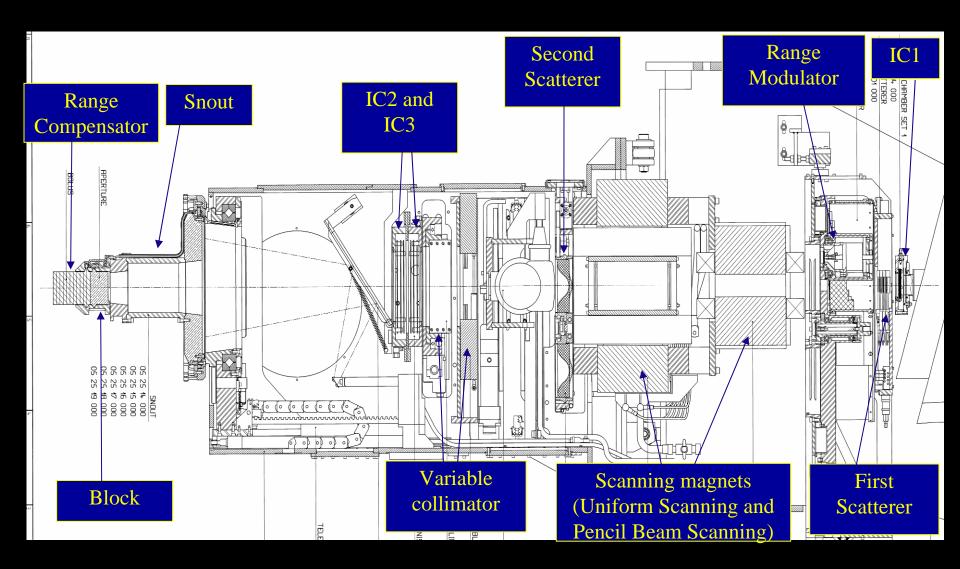
- BCM files are therefore based on beam measurements and fitted parameters.
- BCM files are stored in an Excel spreadsheet file the ConvAlgo (Conversion Algorithm)
- ConvAlgo also specifies first scatterer, collimator, second scatterer, and other cyclotron and beam line settings (range at nozzle, beam current) for a given set of clinical beam prescription parameters (range, modulation, dose rate)



- Validation of the ConvAlgo file is a central part in the commissioning of the IBA proton system
- Eclipse uses ConvAlgo for specification of machine settings as well
- Same ConvAlgo MUST be used in both IBA machine and Eclipse TPS

Clinical para	meters (input)						
· · · ·	Range in patient:	10	g/cm ²				
	Range Modulation:	10	g/cm ²				
	Field Radius:	6.0	cm				
	Dose:	100	MU				
	Dose rate:	2	Gy/min				
	ExpectedIrradTime (*):	100	sec	(sugge	sted:	4.9	sec)
	Range compensator length:	5.0	cm				, í
Equipment s	ettings (output 1)						
a) <u>Cyclo:</u>							
	Range @ nozzle entrance:	19.54	g/cm ²]			
	Beam current @ cyclo exit:	64	nA				
b) <u>ESS:</u>							
	Slits opening:	40	mr				
	B12:	1.330873	Т				
c) <u>Nozzle:</u>							
	Option #	B4	-]			
	FS thickness:	1.465	mm				
	FS thickness:	1.663	g/cm²				
	FS setting:	9	6	2	5	4	X
	RM #	5	-				
	RM track:	5	-				
	Stop position:	254	digit				
	BCM filename:	bcmb4_lo_5	-				
	SS #	8	-				
	SS position:	2	-				
	VC x:	9.8	cm				
	VC y:	9.7	cm				
	presetCountIC2:	30000	cts				
	presetCountIC3:	29784	cts				
	Snout axial position:	5.0	cm				
	Phantom position:	45.0	cm				
Misc. informa	ation (output2)				,		
	RM derivative:	1.3	digit/(g/c	:m²)			
	RV max channel:	12.8	-				
	BoxBWidth:	97.8	msec				
Bea	m current @ nozzle entrance:	7	nA				
	ESS efficiency:	11.36%	%				
	ExpectedCountperCycle_IC2:	30.0	counts				
	Beam energy:	170.67	MeV				
	the: effective Radius of B12;	1.480	m				
	DoseRate:	1.000	MU/sec				
	Dose constant:	0.0081	Gy/MU				
	Stop angle RM:		degree				

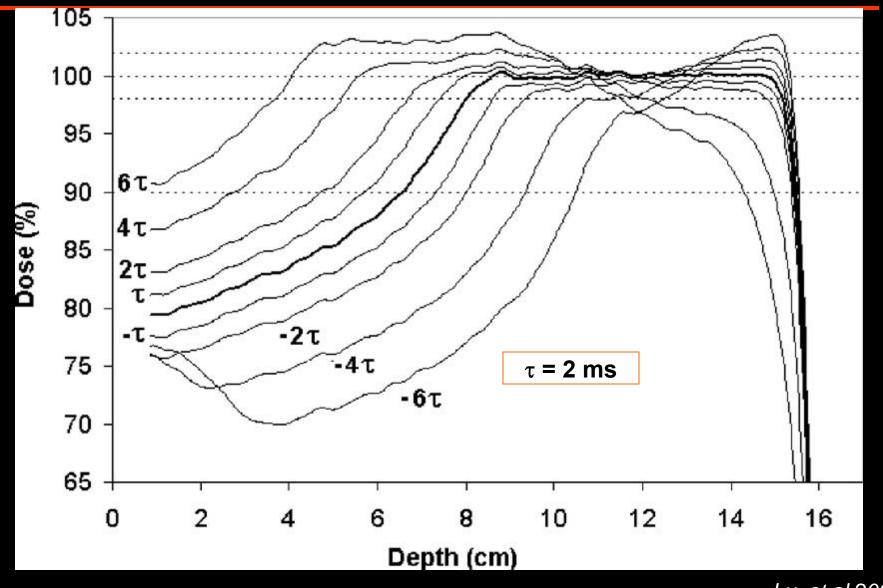

Monitoring of requested vs. measured BCM profiles


PTCOG48 Educational Workshop, 2009

Lu, et al 2007

Effect of IC_{cyclo calibration} on SOBP

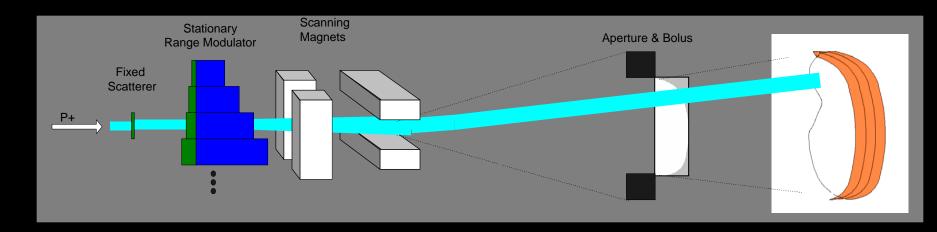
IBA nozzle components



Identification of system failure modes – nozzle

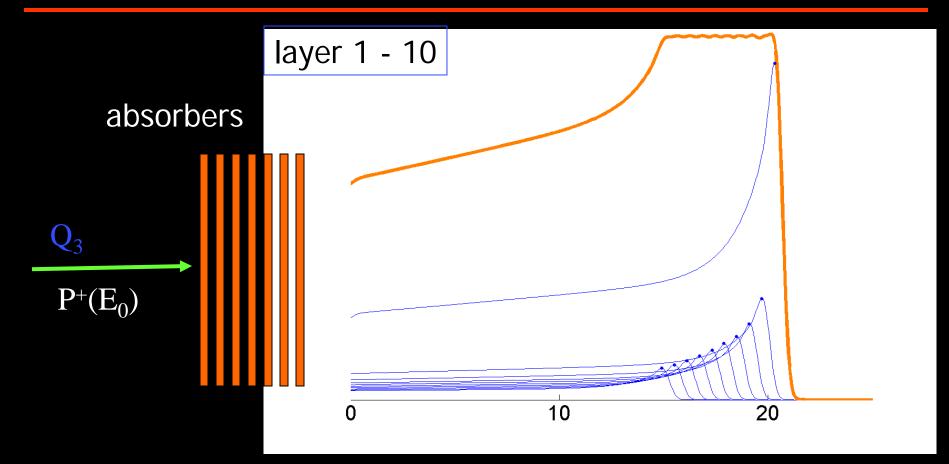
- Potential nozzle failure modes
 - Ion chambers and their electronic units
 - Output changes
 - Lateral profile changes
 - Small range changes
 - Range modulator wheel and its electronic unit
 - Range, modulation, and SOBP changes due to loss of beam synchronization with wheel rotation
 - First and second scatterers and their electronic units
 - Lateral profile changes
 - Output changes
 - Range changes
 - IC1 checks beam centering
 - Replacement IC1 tested for beam centering as well as WET

Effect of BCM timing errors on SOBP

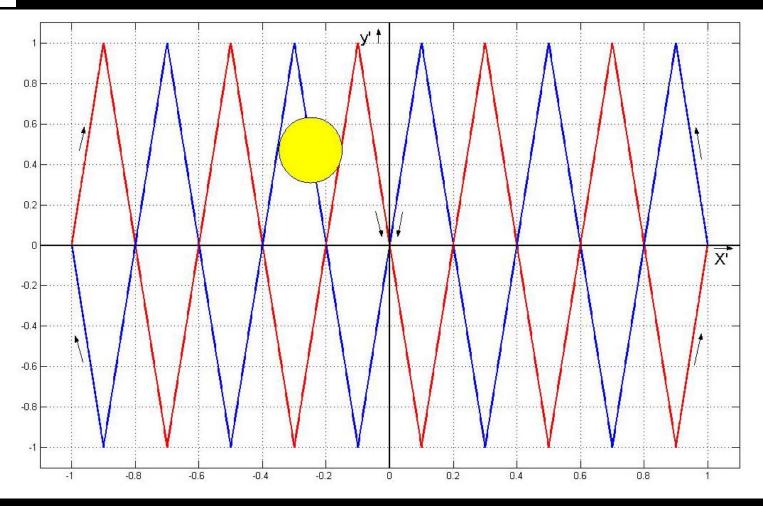

PTCOG48 Educational Workshop, 2009

Lu, et al 2007

- Global, "black box" tests of overall dosimetry characteristics can be performed
- Most of the failure modes can be monitored by measurements of output, range, modulation, SOBP, and lateral profiles


Uniform scanning beam

- two perpendicular dipole magnets, at constant frequency, <u>scan</u> a large spot along a fixed pattern
- a <u>stationary</u> range-modulator wheel is used to deliver the SOBP: energy stacking
- patient specific <u>aperture and compensator</u>


R. Slopsema, 2008

Energy stacking to create SOBP

- Multiple *paintings* per layer to minimize interplay effect of organ motion
- Each layer may take several seconds to deliver
- Appropriate dosimeter needed for efficient QA tests

Continuous scanning pattern

Scanning pattern created by the two perpendicular dipoles, one operating at a frequency of 3 Hz the other at 30 Hz.

R. Slopsema, 2008

Mechanical accuracy test

- All mechanical accuracy tests must be considered in the context of imageguided proton therapy
- Special functions of PPS (tabletop sag correction, gantry sag correction) need to be tested if clinically used
 - Test performed by use of DIPS imaging of box phantom

PPS motion/isocentricity test

- Drifting of PPS motion potential meter calibration
- X-ray test of PPS at various translations and table rotations, with or without gantry rotations

Digital Imaging Positioning System (DIPS)

PTCOG48]

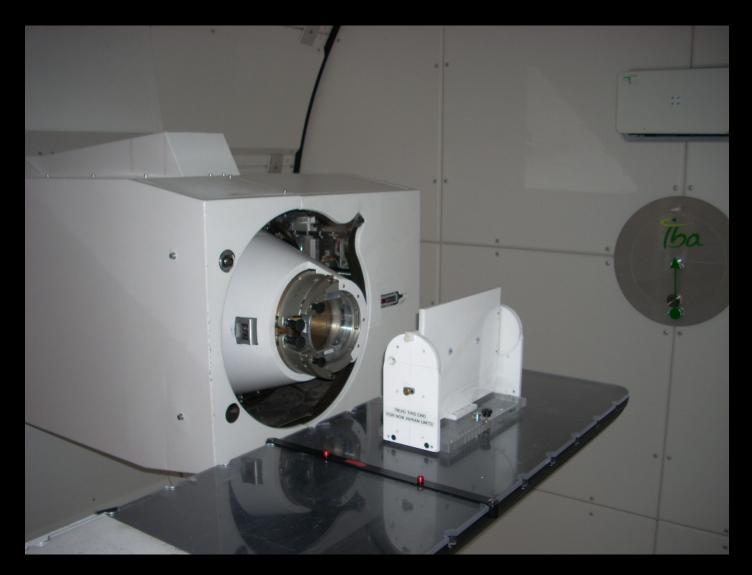
- Cross-hair manually installed on snouts to represent beam isocenter
 - Coincidence of X-ray isocenter to lasers
 - Coincidence of X-ray isocenter and proton beam isocenter
- Testing of imaging systems without cross hairs
 - Periodic test of absolute pixel location relative to x-ray and proton beam CAX

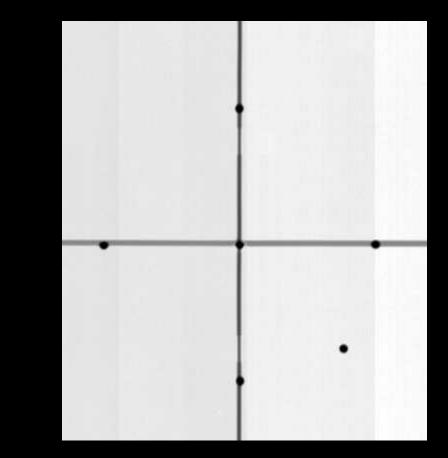
Daily QA: scattering beam only

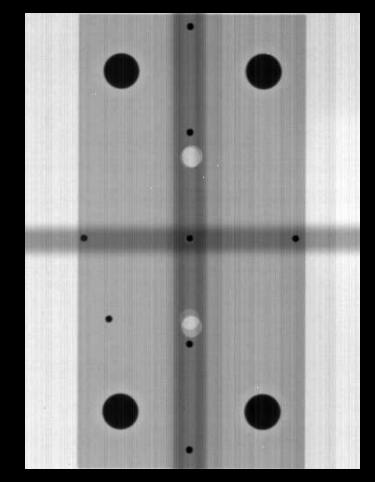
Daily QA	Comments		
Review operator's cyclotron and gantry startup checklists	Operator checks machine operating parameters daily		
Safety interlocks, indicator lights, neutron detector, A/V systems			
kV imaging and laser accuracy	Orthogonal x-ray cross hair and laser alignment to agree to within 1 mm		
Output constancy check for reference field	Output measurements in plastic phantom		
Range verifier reading constancy check for reference field	Range verifier reading constancy for the reference field has been established during machine commissioning		
Range modulation wheel signal timing constancy check	Variations in these timing readings may indicate incorrect beam current modulation application and SOBP quality		

Proton Gantry 1 / Daily QA					
	QA performed by: Liyong Lin Date: Day#				
	1. <u>Record temperature and pressure correction:</u> Air temperature [°C]: 22.0 Air pressure [hPa]: 1008.0 TCS PT correction: 1.005 Water temperature [°C]: 22.0 Chamber PT correction: 1.005 k _{er} = (273.15 + 7) 1013.25 P				
Equipment:	PPC05-407 Electrometer: DOSE1-05-10092 Detector cal factor [Gy/C]: 6.41E+08 Electrometer cal factor [-]: 1.000				
 Room-specific parallel plate chamber 	Phantom type: Solid water Background [C/s]: 0.00E+00 Dose Charge Time Output Doserate Comments: MU [C*10 ⁻⁹] [s] [cGy/MU] [MU/s] Shuichi did				
 Room-specific electrometer 	2.3 Image: second sec				
 Room-specific Iso-Align device 	average 0.957 2.6 stdev 0.008 0.1 Measured output at mid-SOBP [cGy/MU]: 0.957 Exp. Value: 0.962 % Deviation: -0.6				
	3. <u>Record Range Verifier QA field 1:</u> Range verifier reading [cm]: 15.13 Difference from expected [cm]: 0.03				
	4. Record RM timings: 10Hz signal period [ms]: 99.9 RE to FE BoxB [ms]: 71.9 Delay FE 10Hz to RE BoxB [ms]: 0.8 FE 10Hz signal to photocell [ms]: 3.2				
	5. Record position iso-align device center and check distance to crosshair: Iso marker locations [pixels]: rad-A x 574 rad-A y 805 rad-B x 535 rad-B y 775 Dist. marker to xhair ≤1mm?: rad-A □ rad-B ✓ Leveling lasers parallel? : ✓				
6. Test saftey interlocks and devices: Door warning lights: ✓ Audio intercom/Video: ✓ Docr warning lights: ✓ Audio intercom/Video: ✓ Docr warning lights: ✓ Audio intercom/Video: ✓ Docr warning lights: ✓ Audio intercom/Video: ✓ DCEU reset: ✓ Beam pause: ✓ Neutron detector: ✓					

PTCOG48 Educational Workshop, 2009

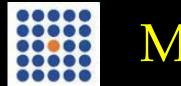

 \bullet Ε


Daily QA -output check


Daily QA – laser/x-ray agreement

Laser vs. x-ray crosshair agreement

RAD-A



RAD-B

Daily QA: scattering and scanning beam

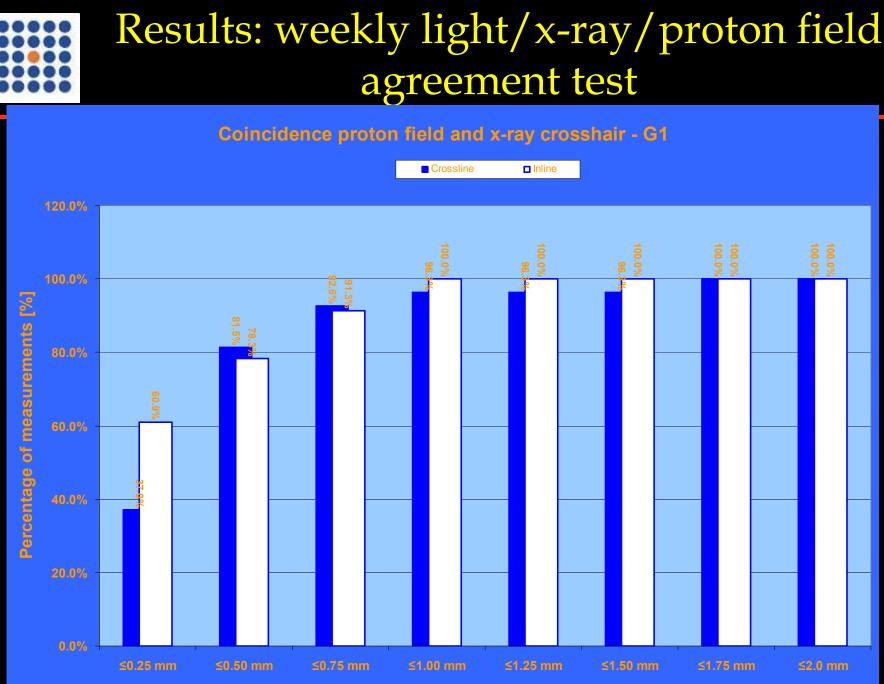
Daily QA	Comments
Review operator's cyclotron and gantry startup checklists	Operator checks machine operating parameters daily
Safety interlocks, indicator lights, neutron detector, A/V systems	
kV imaging and laser accuracy	Orthogonal x-ray cross hair and laser alignment to agree to within 1 mm
Output constancy check for DS/US reference field	Output measurements using MLIC device for both DS and US
Scan field size length and width	Compared TCS reported values to expected values
Range measurement of DS and US reference fields	Range measurement using MLIC device

- Need to measure output and SOBP of scanning beam
- MLIC allows significantly improved efficiency in such measurements
 - One device for both DS and US
 - Accurate output and SOBP measurements
- Scanning magnet controller integrity test
 Scan field dimensions used as indicators
- Modified daily QA requires no additional time for testing

Multi-Layer Ion Chamber (MLIC) system

- 180 channels of parallel plate chambers and electrometers
- Maximum range = 33 cm
- Interpolated range resolution = 0.5 mm
- Simultaneous output and SOBP measurements for both scattering and scanning beams

MLIC system



Periodic QA: weekly

Weekly QA	Comments	
Review daily QA results		
Output measurements in water phantom for two fields	With increased use of MU calculation model, measure output of a random patient treatment field	
SOBP measurements for two fields	Water scan for scattering beam room, MLIC measurement for scattering + scanning beam room	
Total first-scatterer water- equivalent thickness constancy check	First-scatterers are subject to mechanical wear and tear	
Light / X-ray / Proton radiation field agreement	x-ray and proton double exposure film taken to evaluate x-ray cross hair agreement with proton field. Different snouts used each weekly (moved to monthly)	
PPS isocentricity check	Mechanical (laser) and imaging-based checks (moved up from monthly)	
Output and SOBP for DS and US fields	Use MLIC <i>in lieu of</i> water scan for SOBP measurements	
MLIC calibration	New MLIC calibration file created using pristine peak beam	
US field profile check	Scanning field flatness/symmetry check	

- Light /x-ray/proton field agreement test moved down to monthly QA
- PPS isocentricity tests moved up from monthly QA
 - One occurrence of PPS isocentricity degradation between monthly QA
- Weekly MLIC device calibration added
- Weekly scanning beam profile measurement added

distance center proton field to crosshair | [mm]

Proton Gantry 1 / Weekly QA	
QA performed by: Liyong Lin _ Date: Thursday, May 15, 2008 Week#. 92	
1. Temperature and pressure correction: Air temperature [°C]: 22.2 Air pressure [hPa]: 1015.0 TCS PT correction: 0.999 Water temperature [°C]: 22.2 Chamber PT correction: 0.999 k _{ee} - (273.15+72) P	
2. Measured pdd and output QA fields 1 & 2, and one additional field:	
Detector: PPC05-408 Electrometer: DOSE1-05-10092 Detector cal factor [Gy/C]: 6.32E+08 Electrometer cal factor [-]: 1.000 Snout size: 10-cm Background [C/s]: 0.00E+00	
a. Field 1 : Range = 15.1 cm, Modulation = 10.4 cm, Output @ 10 cm in water Number of MU's for tuning: 2.5 Offset: PPC05 → 0.16 cm Depth D ₉₀ [cm]: 14.97 Measured range [g/cm ²]: 15.13 Distance P ₉₀ -D ₉₀ [cm]: 10.59 Measured modulation [g/cm ²] 10.59 Dose Charge Time Output Doserate MU [C*10°] [s] [cGy/MU] [Gy/min]	
MU [C*10*] [s] [cGy/MU] [Gy/min] 100.0	average 1.393 1.9 stdev 0.001 0.0 Measured output at mid-SOBP [cGy/MU]: 1.393 Exp. Value: 1.387 % Deviation: 0.4 Range verifier reading [cm]: 25.07 25.07 25.07 25.07
Measured output at mid-SOBP [cGy/MU]: 0.969 Exp. Value: 0.972 % Deviation: -0.3 Range verifier reading [cm]: 15.12	c. Measure pdd, output, and RV for patient-QA field (either actual Tx field or field with negative QA#) QA# 756 Note: print patient-QA form and attach to this form.
b. Field 2 : Range = 25 cm, Modulation = 12 cm, Output @ 19 cm in water Number of MU's for tuning: 2.2 Offset: PPC05+5cmPA → 5.37 cm Depth D ₉₀ [cm]: 19.77 Measured range [g/cm ²]: 25.14 Distance P ₉₀ -D ₉₀ [cm]: 11.92 Measured modulation [g/cm ²] 11.92	3. Fixed scatterer Iollipop check (in service mode): a. No Iollipops - Range verifier reading [cm]: 25.78 Expected difference: 2.05 b. All Iollipops in - Range verifier reading [cm]: 23.92 Diff in RV All-in to All-out: 1.86
Dose Charge Time Output Doserate MU [C*10*9] [s] [cGy/MU] [Gy/min] 2.2	Invadiate X-ray/proton double exposure film: Snout size: Dist. x-hair to proton / intine (x) mm Dist. x-hair to proton / crossline (y) mm Dist x-hair to proton: mm
	5. PPS isocentricity: Snout size: Proposed move in X [cm] Proposed move in Y [cm] Proposed move in Z [cm]
TCOG48 Educational Workshop, 2009	44

00000	
00000	
00000	

Proton Gantry 2 / Weekly QA (DS&US)				
QA performed by: Date	: Sunday, September 27, 2009 Week#: 163			
1. <u>Temperature and pressure correction</u> : Air temperature [°C]: Air pressure [h	Pa]:TCS PT correction:			
2a. Measure pdd and output DS Field 2 (MLIC): Range [g/cm²]: Modulation width [g/cm²]: Output [cGy/MU]:	Diff from expected [g/cm²] Diff from expected [g/cm²] Diff from expected [%]			
2b. Measure pdd and output US Field 2 (MLIC): Range [g/cm ²]: Modulation width [g/cm ²]: Output [cGy/MU]: Total delivered MU: Corrected output [cGy/MU]:	Diff from expected [g/cm²] Diff from expected [g/cm²] Diff from expected [%] Diff from expected [%]			
3. <u>Measure profile US Field 1:</u> Profile size X (inline) [cm]: Flatness X (inline) [%]: Symmetry X (inline) [%]: Profile Y (crossline) [cm]: Flatness Y (crossline) [%]: Symmetry Y (crossline) [%]:	Diff from expected [cm] Diff from expected [cm]			
 4. <u>Fixed scatterer lollipop check (in service mode):</u> a. No lollipops - Range verifier reading [cm]: b. All lollipops in - Range verifier reading [cm]: 	Expected difference: Diff in RV All-in to All-out:			
5. <u>X-ray crosshair, aperture, and light field alignment</u> Snout size: a. Light-field to x-ray alignment Proposed move in X [cm] Proposed move in Y [cm]	t: b. Aperture to crosshair alignment Proposed move in X [cm] Proposed move in Y [cm]			
6. <u>PPS isocentricity:</u> Snout size: Proposed move in X [cm] Proposed move in Y [cm]	Proposed move in Z [cm]			

PTCOG48 Educational Workshop, 2009

45

Periodic QA: Monthly QA

Monthly QA	Comments	
Review weekly QA results		
Complete weekly QA		
Dose profile symmetry and flatness measurement for two fields	MATRIX ion chamber array used	
Pristine peak depth dose measurement for two fields	Verify pristine peak beam energy spectrum constancy to rule out beam steering and centering errors	
Gantry and treatment table movement accuracy, x-ray imaging patient shift calculation accuracy	Mechanical accuracy tests combined with x-ray imaging shift calculation accuracy test, by comparing artificially introduced and measured phantom shifts and rotations (moved to weekly)	
Light / X-ray / Proton radiation field agreement	x-ray and proton double exposure film taken to evaluate x-ray cross hair agreement with proton field. Different snouts used (moved up from weekly)	

Monthly QA Gantry 1

20-May-08

¥

Inline symmetry:

Crossline symmetry:

90-90% Width Field2:

%

%

cm

Month: Year: Physicist: Select... ¥ 2007 ¥ Who are you? 1. Perform weekly QA (use the weekly form) Is weekly QA OK? Snout used: Y Pick snout 2. Profiles QA Field 1 (R=15.1 cm, M=10.4 cm): QA Field 2 (R=25 cm, M=12 cm): Inline flatness: Inline flatness: Inline symmetry: % % % Crossline flatness: Crossline symmetry: Crossline flatness: % % % 0 Profile instructions 3. Pristine peaks (Add WET of chamber wall to range) PP Field 1 (R=15.53 cm): PP Field 1 (R=24.50 cm): Range PP Field1: 90-90% Width Field1: Range PP Field2: cm cm cm 0 Pristine peaks instructions 4. DIPS Gant Box @ PPS x

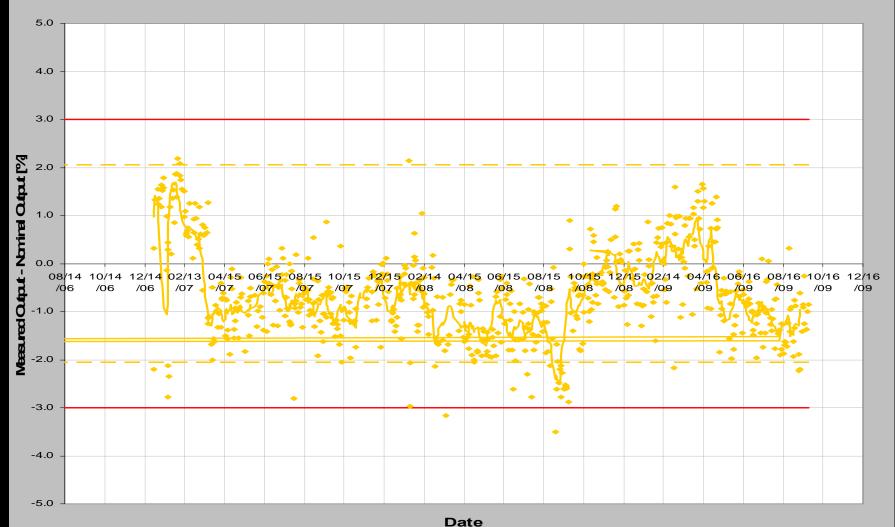
DIPS

Comments:

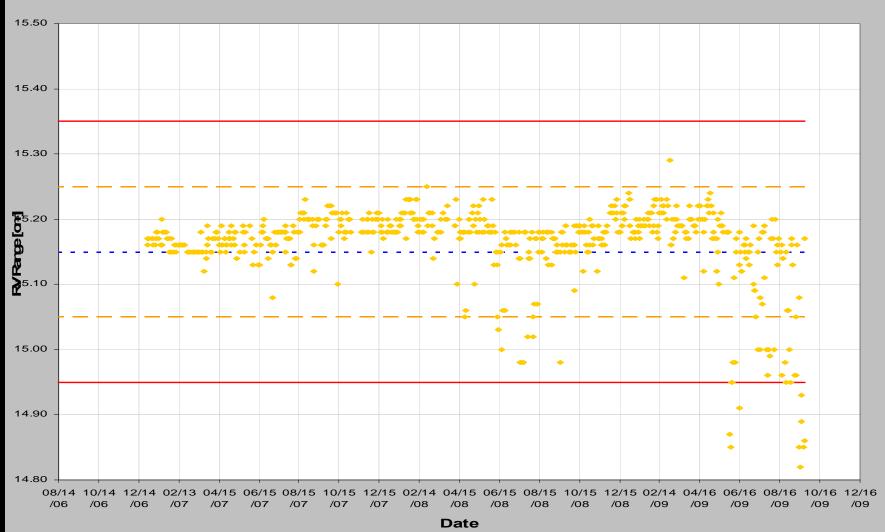
The X-ray and Proton fields alignment form is attached.

Gantry at 270°:							
Box @ iso:	New PPS position:	Position difference:	DIPS corrections:				
PPS x:	PPS x:	PPS x:	PPS x:				
PPS y:	PPS y:	PPS y:	PPS y:				
PPS z:	PPS z:	PPS z:	PPS z:				
Gantry at 315°:							
Box @ iso:	New PPS position:	Position difference:	DIPS corrections:				
PPS x:	PPS x:	RadA x:	RadA x:				
PPS y:	PPS y:	RadA y:	RadA y:				
PPS z:	PPS z:	RadB x:	RadB x:				
		RadB y:	RadB y:				
DIPS instructions	1						

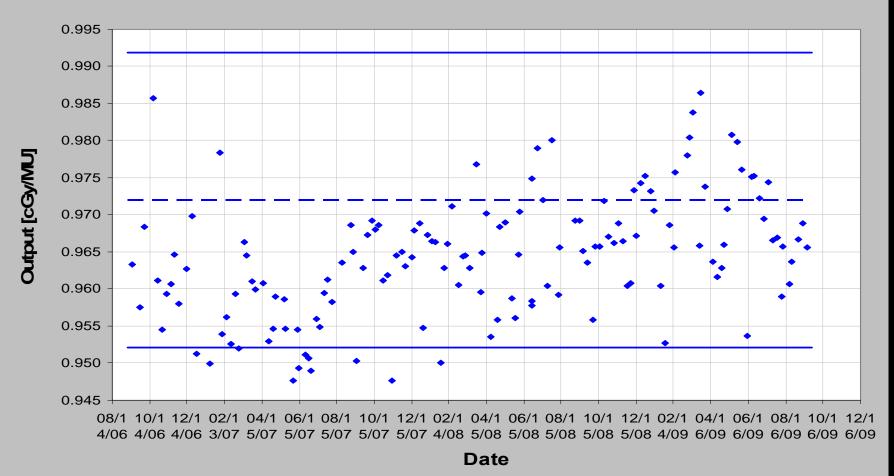
Periodic QA: Annual QA A "mini" commissioning exercise


Contents

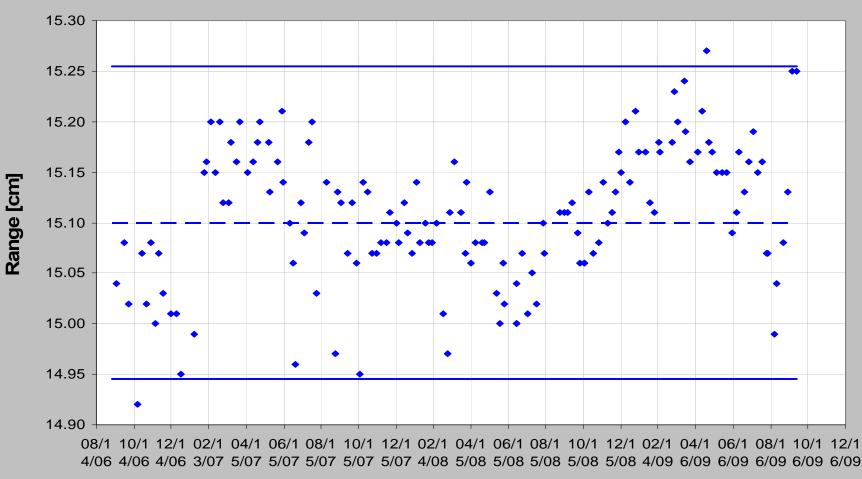
- A. Summary daily, weekly, monthly, and patient QA data
 - 1. Analysis QA data and evaluation convalgo
 - 2. Analysis system performance and summary of interventions
 - B. Verification sub-system calibration
 - 1. Energy-selection system calibration
 - 2. Ionization chamber at cyclotron exit
 - 3. Potentiometer range-modulator wheel
- C. Verification dosimetry
 - 1. Absolute machine output calibration and cross-comparison of detectors and electrometers
 - 2. Output and dose rate
 - 3. PDD and range and modulation accuracy
 - 4. Lateral profiles
- D. Verification mechanical alignment
 - 1. Gantry isocentricity and positioning accuracy
 - 2. PPS isocentricity and positioning accuracy
 - 3. Snout positioning accuracy
- E. Verification imaging
 - 1. X-ray and proton field coincidence
 - 2. Light-field alignment
 - 3. Laser alignment
 - 4. X-ray system
- F. Verification aperture and range-compensator properties
 - 1. Apertures
 - 2. Range compensator stopping power
- G. Verification safety interlocks and radiation monitors
 - 1. Safety interlocks
 - 2. Radiation monitors


Results: daily output

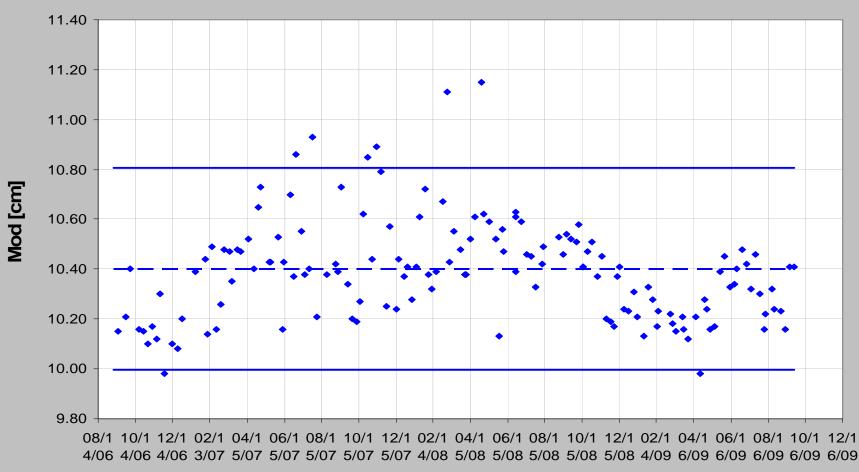
Daily QA / G3 / Output Field 1


Results: daily range verifier readings

Daily QA / G3 / Range Field 1


Results: weekly output

Field 1 (R=15.1, M=10.4)


Field 1 (R=15.1, M=10.4)

Date

Results: weekly modulation

Field 1 (R=15.1, M=10.4)

Date

Results: Output Calibration

7515 South Main Street, Suite 300, Houston, TX 77030 • Tel. (713) 745-8989 rpc@mdanderson.org · http://rpc.mdanderson.org · Fax: (713) 794-1364 THE UNIVERSITY OF TEXAS MD AN DERS CANCER CENTER

Making Cancer History®

RESULTS OF TLD CHECK OF PROTON BEAM v8.0.2

Institution: **RTF Number:** Person irradiating dosimeters: **Radiation Machine:** Distance from source to reference point:

Univ of Florida Proton Therapy Institute, Jacksonville, FL 3180 Zuofeng Li, D.Sc. IBA Cyclotron (Gantry 1) 222.0 cm

OUTPUT VERIFICATION:

Ratio of absorbed dose determined by RPC to Proton Date of Dose determined by Dose determined by RPC:* Irradiation institution:* that stated by institution: TLD/INST Energy

79.2 MeV 03/09/2008 289 cGv to muscle 289 cGy to water 1.00

Radiation Machine: Distance from source to reference point: IBA Cyclotron (Gantry 2) 222.0 cm

OUTPUT VERIFICATION:

Proton Date of Dose determined by Ratio of absorbed dose determined by RPC to Dose determined by Irradiation RPC:* institution:* that stated by institution: TLD/INST Energy

79.2 MeV 03/09/2008 289 cGv to muscle

Person irradiading dosimeters:

291 cGv to water

222.0 cm

Distance from source to reference point:

OUTPUT VERIFICATION:

Radiation Machine:

Proton Date of Dose determined by Dose determined by Ratio of absorbed dose determined by RPC to Irradiation RPC:* institution:* that stated by institution: TLD/INST Energy

PTCOG48 Education^{79.2 MeV} 03/08/2008 291 cGv to muscle 294 cGv to water

0.99

0.99

Zuoteng LI, D.Sc. IBA Cyclotron (Gantry 3)

- Ion chamber malfunctions: detected in daily QA output measurements
- First scatter failures: detected in daily QA output measurements and range verifier readings
- TCS software failure to upload BCM profiles: detected in daily QA output measurements
- DIPS imaging panel absolute position variations
 - No impact on patient alignment when mechanical cross hair is used
 - Is a concern with new imaging system that does not use mechanical cross hair

Summary

- Many proton therapy system failure modes can be monitored by standard dosimetric measurements, such as output, beam range and modulation, SOBP flatness, lateral profile flatness, etc
- Additional system-specific tests may need to be identified and implemented
- Design of a periodic QA program for proton therapy is a continuing process, with additions and/or deletions of specific tests determined by a comprehensive review of system performance over time
- Periodic QA program continues to be modified as new technical features are added