Particle Beam Production - A Synchrotron-Based System -

Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center

Outline

- Situation/Rationale
- Requirements
- Synchrotron choice
- Functions
- Implementation@HIT
- Performance
- Conclusion

Th. Haberer, Heidelberg lontherapy Center

Situation

- 2/3 patients suffer from a local disease at the time of diagnosis
- In 18% local treatment modalities fail => 280.000 deaths/year in the EC
- Protons and ions have the potential to cure 30.000 patients/year in the EC

relevance of local tumor control (EC-study 1991)

Th. Haberer, Heidelberg Iontherapy Center

The key element to improve the clinical outcome is **IOCAL CONTROL!**

275 MeV/u ¹²C in Water, 3mm FWHM

entrance channel:

- low physical dose
- low rel. biol. effiency

tumour:

- high physical dose
- high rel. biol. effiency

Outline

- Situation/Rationale
- Requirements
- Synchrotron choice
- Functions
- Implementation@HIT
- Performance
- Conclusion

Th. Haberer, Heidelberg lontherapy Center

Requirement engineering

Application

treatment of tumors with ion beams (conform, precise)

1st level requirements

dose deposition in patient → dose delivery at isocenter

2nd level requirements

beam application system

3rd level requirements

accelerator specifications
 beam application system

accelerator requirements: interface to scanning system

Protons (Pedroni et al., PSI): spot scanning gantry 1D magnetic pencil beam scanning plus passive range stacking (digital range shifter)

Ions (Haberer et al., GSI): raster scanning, 3D active, 2D magnetic pencil beam scanning plus active range stacking (spot size, intensity) in the accelerator

Beam Scanning

Th. Haberer, Heidelberg Iontherapy Center

Single beam...

+ scanning in depth

(lateral scanning

= 3d conformed dose)

Accelerator requirements

- scanning ready pencil beam library:
 - energy: up to 30 cm WE, ~1 mm steps, ∆E/E ~1%
 p: 48 200 MeV, C: 88 430 MeV/u
 - spot sizes: 4 10 mm (3-4 steps), 2D Gaussian
 - intensity: ~10¹⁰ (p), ~10⁸ (C) per spill
 - ~ 100.000 combinations
- beam purity
- several quasi parallel particle types
 <u>– change of particle type < 60 s</u>
- availability ~95%
- low operational & maintenance cost

Spot Size Library for Carbon

Economic requirements

- change of particle type < 60 s (dead time)
- change of treatment room < 30 s (dead time)
- number of treatment rooms ← utilization of accelerator
- 300 days per year, 16 hours per day
- ~1-2 min per treatment field (~1I, ~1-2 Gy) (target fraction duration: 15 min incl. 4 min beam)
- initial cost
- operational & maintenance cost

Outline

- Situation/Rationale
- Requirements
- Synchrotron choice
- Functions
- Implementation@HIT
- Performance
- Conclusion

Th. Haberer, Heidelberg lontherapy Center

Synchrotrons – Principle Layout

Injector linac with energies of some MeV/u: → v ~ 10% c **Magnetic rigidity:** $p \rightarrow 2,26 \text{ Tm}$ $C \rightarrow 6,6 \text{ Tm}$ With ~ 50% fill factor for dipoles: $p \rightarrow Ø_{Sync} \sim 6 m$ $C \rightarrow Ø_{Svnc} \sim 18 \text{ m}$

Proton-Synchrotron, Shizuoka, Japan

Rasterscan Method

scanning of focussed ion beams in fast dipole magnets

active variation of the energy, focus and intensity in the accelerator and beam lines

utmost precision via active position and intensity feed back loops

intensity-controlled rasterscan technique @ GSI Haberer et al., NIM A , 1993

Treatment quality requirements

- beam scanning only
- intensity controlled scanning process (T < 5 ms per voxel)
- precise beam position & width (error < 25% FWHM)
- pencil beam library (100.000 comb.: energy, focus, particles per second)
- maximum energy (430 MeV/u carbon, 6.7 Tm rigidity)
- energy variation (~1% in 1s)
- energy spread (~ 0.2%)
- intensity modulation (Imax: ~10¹⁰ (p), ~10⁸ (C) per spill) (variation: 1...1000, Nmin: 3000 lons/Voxel)
- spill structure (smooth: Nmax/Navg ~ 2 @ 1ms)
- beam purity (impurity < 1%)
- number of quasi parallel particle types (Protons, Helium, Carbon, Oxygen)

Outline

- Situation/Rationale
- Requirements
- Synchrotron choice
- Functions
- Implementation@HIT
- Performance
- Conclusion

Th. Haberer, Heidelberg lontherapy Center

Functions

Ion: source, LEBT Intensity: LEBT Energy: Synchrotron, HEBT Focus: HEBT Beam Abort: Synchrotron, HEBT

Th. Haberer, Heidelberg Ion Therapy Center

Outline

- Situation/Rationale
- Requirements
- Synchrotron choice
- Functions
- Implementation@HIT
- Performance
- Conclusion

Th. Haberer, Heidelberg lontherapy Center

HIT Accelerator System

Injector

Synchrotron

HEBT+Gantry

Medical Areas

Hebblerg Inventor/Altrengthe Cledium

ECR: 14,5 GHz SUPERNANOGAN

Size	L = 324 mm
<u>ې</u>	Ø = 380 mm
B injection	1,2 T
<i>B</i> min	0,45 T
B extraction	0,9 T
<i>B</i> hexapole	1,1 T
max. extraction voltag	e 30 kV

Solenoids are permanent-magnets!

LEBT (Low Energy Beam Transport)

•Beam transport: IQ ... RFQ

- •Selection of lon species (incl. Spectrometer for charge state selection)
- Intensity variation
- Switching of source branches
- chopping

adaption to RFQ-acceptance

RFQ (Radio-Frequency-Quadrupol)

Radio-Frequency-Quadrupol-Principle

Linear accelerator *I.M. Kapchinsky* und *V.A. Tepliakov* (1970) Consists of sinusoidally modulated (π/2-shifted) Quadrupol-Electrodes E-Field-component in z-dir. focusses the beam transversally "Bunching" and acceleration of the beam longitudinally

4-Rod RFQ-Structure

1,39 m

entrance

Length
Diameter
Electrodelength
Voltage
HF-power (pulsed)
End energy

≈ 1,44 m 0,25 m 1,28 m 70 kV ≈ 190 kW 400 keV/u

IH-DTL (Interdigital H-Mode Drift-tube Linac)

Wideröe Linac

Hathalang lawandrah Winangdo Cantorn

IH-Drift-Tube-Linac

exit

Final energy	7 MeV/u
Gaps	56
Integrated magnetic	
Quadrupol-riplet-lenses	3
Length	≈ 3,77 m
Height	≈ 0,34 m
RF power (pulsed)	≈ 1 MW
eff. Total voltage	21 MV
eff. avg. Gradient	5,7
Momentum width (exit)	±0,16 %

MEBT (Medium Energy Beam Transport)

Elektrostatisches Iniektionsseptum

- Beam transport and monitoring
- Charge state separation stripper
- Preparation of the pulse for injection (length, energy definition, emittance)

Synchrotron

- Ring accelerator
 V.I. Veksler | E.M. McMillan (1945)
- constant radius, variable magnetic field
- variable frequency HFcavity
- synchronous ramping of the magnets and the HF-Frequenz (beam energy)
- Seperate function
 accelerator

HIT-Synchrotron

HIT-Injection Devices

Acceleration

- HF-capture (bunching) 2nd harmonic
- Acceleration up to nominal energy
 - **Cavity with ferrites**
- Frequency range: 1-7 MHz
- Max. HF-voltage: 2,5 kV
- power: 6,4 kW
- Source: Hitachi

RF-KO-Extraction

Principle

- resonant HF-excitation (betatron frequency)
- constant separatrix
- Characteristcs
 - slow extraction
 - constant ion-optical settings dring extraction
 - Multiple extractions available
 - Spillshaping via amplitude modulation

HIT-Extraction Devices

HEBT (High Energy Beam Transport)

- Beam transport
- Beam abort system
- Beam monitoring
- Beam position and width at the isocentre

Spill-Abort-Magnet (SPAM)

Scraper

Steerer (H1MS2H)

SPAM (H1MB1)

Steerer (H1MS3H)

Beam Spot Size Setting

Rahidung lawardish Ginangda Cladium

Outline

- Situation/Rationale
- Requirements
- Synchrotron choice
- Functions
- Implementation@HIT
- Performance
- Conclusion

Th. Haberer, Heidelberg lontherapy Center

Intensity: Stability 30 Days

Outline

- Situation/Rationale
- Requirements
- Synchrotron choice
- Functions
- Implementation@HIT
- Performance
- Conclusion

Th. Haberer, Heidelberg lontherapy Center

Advantages of a synchrotron

- It works and fulfills all requirements.
- proven technology
- stable & reliable operation
- built-in flexibility (particle types, moving targets)
- active energy variation
 - maximum beam purity
 - minimum radiation protection effort

Disadvantages of a synchrotron

Particle therapy facility

- size of foot print
- initial cost
- (several treatment rooms required)

- current uniformity
- repetition rate

440 patients

Scanned Carbon vs. Intensity Modulated Photons

scanned carbon 3 fields

IMRT 9 fields

reduced integral dose steeper dose gradients less fields increased biological effectiveness

courtesy O. Jäkel, HIT

Heidelberg Ion Therapy Center

- compact design
- full clinical integration
- rasterscanning only
- low-LET modality: Protons (later He)
- high-LET modality: Carbon (Oxygen)
- ion selection within minutes
- world-wide first scanning ion gantry
- > 1000 patients/year
 > 15.000 fractions/year

Thank you for your attention !

(Intensity modulated raster scan, ¹²C at 430 Mev/u, October 15th 2007)