

PRELIMINARY INVESTIGATION FOR DEVELOPING REPAINTED BEAM SCANNING ON THE PSI GANTRY 2

Silvan Zenklusen E. Pedroni, D. Meer Paul Scherrer Institut (PSI) 24th May 2008, PTCOG 47

Motivation: Beam scanning and organ motion

The effect of organ motion:

- The <u>lateral dose conformation</u> can not be guaranteed (scattering and scanning)
- Disturbance of the <u>dose homogeneity</u> (only scanning)
 This makes spot scanning very sensitive to organ motion during beam delivery
 - With Gantry 1 we can treat only immobile lesions, e.g. tumors in
 - head
 - spinal chord
 - low pelvis
 - We accept only movements <1-2mm with full fractionation

Importance of fast scanning

A faster dose delivery allows for target repainting and reduces local interference effects.

 \rightarrow Statistical error is reduced by $\frac{1}{\sqrt{N}}$

Fast change of energy allows to rescan the volume (volumetric repainting)

 \rightarrow inherent advantage of scattering

Repainting smears out the spot over the motion amplitude.

Pencil beam scanning methods at PSI

Gantry 1 - *spot scanning*

Gantry 2 - spot & line scanning

A framework for simulations of the different dose delivery strategies on PSI's Linux cluster

A framework allowing a systematic study over the phase space of the motion parameters was built.

"Phase space" consists of:

- 50 respiration frequencies (1-50 per minute)
- 12 start phase (each 30°)
- 1 direction of motion
- 1 motion amplitude

Repainting strategies

- Number of repaintings N=1, 2, ..., 15 (15)

PSI – Linux - Cluster:

- 24 compute nodes (two dual core AMD Opteron 2.4 GHz CPUs, 8GB RAM)
- Equivalent to 96 single-CPU PC's
- 12 TByte disk space

S. Zenklusen, PSI

Typical run: \rightarrow 9000 (= 50 ·12 ·15) dose calculations

Would take about 60 days on a standard PC, but approximately 1 day on the cluster!

Analysis method

Dose distribution without repainting, motion along X-axis

- Cos⁴-motion to simulate respiration
 - 5 mm amplitude
 - Motion along X direction
 - Constant respiration frequency
 - Fixed start phase
- Beam size σ = 3mm
- Homogeneous spherical targets (1/4, 1/2 and 1 liter) in water.
- For each dose distribution the homogeneity is expressed as the Root Mean Square of the difference to the prescribed dose for each voxel.
- Spectrum of RMS of typically 600 dose calculations

Results: Comparison of different delivery techniques (12 start-phases, 50 frequencies, N = 1-15 repaintings)

- median of the RMS spectrum
- --- 75 % of the dose distributions are below upper dashed line.
- --- 25 % of the dose distributions are below lower dashed line.

Results: Comparison of different volumes (12 start-phases, 50 frequencies, N = 1-15 repaintings)

- G1 spots / motion perp. to sweep
- G2 spots
- G2 lines

- three minutes limits
- median of the distribution
- --- 75 % of the dose distributions are below upper dashed line.
- --- 25 % of the dose distributions are below lower dashed line.

Interference of scan volume time and motion period

- A potential problem of interference between the volume scan time and the motion period occurs, since scaled repainting is highly repetitive.
- How realistic is this case and what can be done about it?
- Possible improvements:
 - Introduce random pauses between repainting cycles.
 - Other repainting strategy: Iso layer repainting

Repainting strategies

- Dose is built up by applying different dose layers at different energies.
- Spots in central region get dose from previous layers.
- In this case boundary regions of layers get higher doses as compared to central regions.

Repainting strategies

- Scaled repainting:
- Dividing the dose by a constant factor N = number of repaintings.
- Leads to very small doses per spot, not efficient, difficult to deliver.
- Simple (just repeat plan).

- Iso-layer repainting:
- Setting an upper dose limit per spot per visit via a maximal beam-on-time.
- Efficient (only uncompleted spots are revisited)
- Spots in the middle fall away, more difficult to find an optimal path.

Challenge and benefit of iso-layer repainting

Finding the shortest path is the typical traveling salesman problem that can be solved by a optimization algorithm.

S. Zenklusen, PSI

Conclusions and outlook

- A systematic simulation study is ongoing to investigate the problem of motion and beam scanning.
 - \rightarrow Repainting helps reducing dose inhomogeneities within the target volume.
 - \rightarrow A fast scanning system is mandatory to achieve high repainting rates.
 - → For volumetric repainting within acceptable treatment time the speed of changing the energy is the limiting parameter.
 - \rightarrow Gantry 2 will allow to irradiate a target using volumetric repainting.
 - \rightarrow Line scanning is superior to spot scanning especially for large target volumes.
- Future studies will be investigating
 - \rightarrow Expected benefits from iso-layer repainting.
 - \rightarrow Simulated scattering with a scanning machine.
 - \rightarrow Repainting in combination with gating/tracking.