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Background 

•  Protons are a useful tool for cancer treatment 

•  The Bragg Peak allows for conformal dose 
distributions to the tumor volume 

•  Questions have been raised as to the whole 
body dose in proton therapy 

•  This dose is delivered by scattered protons and 
secondary particles including neutrons 

•  Neutrons additionally produce increased cell kill 
and mutation    

IMRT Protons 
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Neutron Production 

[1] M. Moyers et al., “Leakage and scatter radiation from a 
double scattering based proton beamline”, Med. Phys., 35, 
1, 2008, pp. 128-144  

Neutrons with 
E<10MeV 

Neutrons with 
E>10MeV 
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Dose Equivalent Measurements 

•  Physical measurements in such cases are scarce 

•  Detection of a range of particles is required  

•  High spatial resolution is required for measurements 
within phantoms in close proximity to the field edge 

•  Consideration of mixed particle quality factor for the 
determination of dose equivalent is also difficult 

•  Clinically relevant measurements are required 

•  Measurements are necessary to validate Monte 
Carlo 
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Equipments 
•  Bonner 

sphere 

ALOKA neutron survey meter TPS-451C 

Q=4.79MeV 

LUDLUM neutron ball cart model 42-5 

• Sv (up to 15 MeV) 
• energy spectra not available 

detector: 
LiI(Eu) scintillator, 4mm x 4mm 

detector: 
3He proportional counter 

Q=0.77MeV 

  rem counter 

(diameter: bare, 2”, 3”, 5”, 8”, 12”) 

Courtesy of Dr Matsufuji, HIMAC 
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Experiment (HIMAC, BIO beam line) 

•  incident beam (~160mm range 
in water) 

•  12C-290MeV/n, 1H-160MeV 
•  100mm dia., SOBP 60mm 

•  target 
•  water (390mm) 

•  position 
•  0, 15, 30, 45, 60, 90 deg 
•  173 cm from target 

Bonner sphere 
LiI(Eu) 

VETO 
NE102A 

target 
water (390mm) 

veto fired 

veto slipped 

Courtesy of Dr Matsufuji, HIMAC 
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Research Aim 

To conduct microdosimetry measurements of 
external field dose equivalents for passively 
delivered clinical treatment fields in proton 
therapy 
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What is Microdosimetry 

•  When measuring cellular effects, it makes sense to use 
detectors the same size as a cell - MICRODOSIMETRY 

•  Size = 10µm = 1/2500 inches 

•  Each event interacting with the  

 volume is measured and recorded 

•  Suitable for measuring neutron dose 

•  “Dose Equivalent” can be determined 
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Solid State Microdosimetry 

•  SOI microdosimeters developed by Centre for Medical 
Radiation Physics at the University of Wollongong 

•  Small size allows for accurate measurements near the 
treatment field edge  

•  Tested extensively in Proton and Heavy Ion Therapy 

1/3 Diameter of a  

Human Hair! 
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Silicon-On-Insulator (SOI) Microdosimeter 

•  Provides true microscopic Sensitive Volumes 

•  Volume Area 30x30µm2 or 100x100µm2 

•  Volume thickness either 2, 5 or 10µm 

•  Array size 50 – 5000 independent cells 
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Experimental Setup 

DAQ PC 

Detector Bias & Pre-Amp Power Supply 

Microdosimeter Probe 

Main Amp 

Multi-Channel Analyser 
Al Faraday Cage (0.9mm) 

SOI Microdosimeter Chip Pre-Amp (AMPTEK A-250) 

Al Entrance Window (4µm) 
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Dose Equivalent Determination 
•  Dose is determined from the f(E)/E Spectra in the 

following method: 
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Dose Equivalent Determination 
•  The lineal Energy Spectra is determined by dividing 

the energy by the mean chord length <l>: 

•  Where <l> in this 
case is 19.05µm 
and ζ=0.63 is the TE 
conversion factor 
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Dose Equivalent Determination 
•  A normalised dose weighted lineal energy spectra 

can be obtained using the following relationship: 
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Dose Equivalent Determination 
•  The final step in determining dose equivalent (Sv) is to 

convolve the dy spectra with a quality spectra Q(y). 
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Dose Equivalent Determination 

•  Advantages include: 
•  Small Size (precision in placement) 

•  Established Q(y), ICRU 40 

•  Q(y) changes with lineal energy 

•  Wide range of lineal energies (1.0-1000keV/µm) 

•  Possible errors include: 
•  Noise threshold removing some signal (limit 0.8 keV/µm) 

•  Q(y) determined in-vitro (artificial case?) not in-vivo (real 
case?) 

•  Assumptions in average stopping power conversion 

•  Secondaries produced within device (I.Cornelius et al, 
CMRP) 
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Clinical Treatment Fields 

•  Wide range of clinical treatment fields chosen 

•  All parameters were reproduced from clinical 
settings  

•  Fields chosen included: 

•  Prostate Cancer 

•  Cranial and Spinal Medulloblastoma 

•  Stereotactic (mMLC and Aperture) 

•  Ocular Melanoma 

•  Brass Beam Block 
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Results 
•  mSv dose equivalent (H) measured 

at lateral displacement from the 
field edge 

•  8.3 mSv/Gy < Hsurface < 0.3 mSv/Gy 

•  Sharper decrease in H within 
phantom 

•  QAvg increases from 2 → 7 

•  QAvg constant past SOBP and with 
beam block in place 

•  H similar for beam block and 
patient aperture at phantom 
surface 

•  H highest for beam block on central 
axis 
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Results 

•  5.5 mSv/Gy < Haperture < 0.9 mSv/Gy 

•  7.1 mSv/Gy < Hblock < 0.5 mSv/Gy 

•  Haperture has a different dependence 
on depth than Hblock 

•  Scattered primary protons affects H 
and the determination of Q up to 
22.3 cm depth (see our poster 
B.Clasie et al.) 

•  Downstream of the Bragg peak, 
difference in H is due to n 
generated in the phantom 

Scanning parallel to the beam at 5cm offset 
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Results:medulloblastoma 
Measurements lateral to the primary field 

•  10 mSv/Gy < Hcranial < 0.6 mSv/Gy at 
phantom surface  

•  Cranial medulloblastoma results similar 
to those for prostate at phantom surface 

•  In comparison with the prostate cancer 
field: ↓ Proton Energy  ↑ Field Size 

•  Reducing energy in the spinal case 
produces less dose equivalent lateral to 
the primary field 

•  QAvg is larger for the spinal case, which 
indicates that there is less contribution 
from scattered primary protons 
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Results: downstream of the Bragg peak 

•  H and QAvg on central 
axis is similar for both 
treatment configurations 

•  2.3 mSv/Gy < H < 0.6 mSv/
Gy 

•  QAvg constant at 5 
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Results: ocular melanoma 

• 27 mm range and 
25 mm SOBP 

• 1.1 cm  diameter 
field 
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Results: ocular melanoma 

•  Greater than order of 
magnitude difference 
in H between fields 
due to lower proton 
energy 

•  QAvg is similar at close 
to the field and 
increasing with lateral 
distance 
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Results: Stereotactic beam 

 2 cm field diameter in 
MLC and brass aperture, 
parallel to the beam at 
5cm from the field edge 

•  H higher for the mMLC 
case by as much as 50% 

•  QAvg mMLC is generally 
lower indicating leakage 
protons 
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3D SOI silicon microdosimetry:new design, CMRP   
3D silicon cell array:  fabricated at SNFF , UNSW, Australia, Prof A.Dzurak 
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3D SOI silicon microdosimetry:new design, CMRP 

Response of new 3D SOI 
microdosimeter on  1 µm 
diameter 3 MeV alpha particles  
scanning microbeam (ANSTO 
Dr M.Reinhard). 

Each cell has sensitive volume 
with a diameter of 6 µm and 
pitch 20 µm  

Collaboration with ANSTO 
heavy ions micro beam probe, 
measurements were done by  
PhD student Ms Amy Ziebell , 
CMRP, Uni of Wollongong   
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Overall Conclusion 

•  This work has provided an assessment of dose 
equivalent for clinical proton therapy configurations 

•  The results highlight that neutrons are present but are 
not in great abundance 

•  External field dose equivalent dose depend on the 
treatment situation and less with reduced proton 
energy 

•  However, the external field dose equivalent is not 
largely field size dependant as initially hypothesized 

•  Results obtained are analogous to leakage from 
MLC’s in IMRT or less. 
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Overall Conclusions 
•  Leakage radiation for 6MV X-ray 

measured along patient central axis 
(depth=10 cm) 

•  X-Ray data normalised to Dmax = 1.6 
cm 

•  Proton data for cranial 
medulloblastoma field (15x17 cm2) at 
a  WED 8.4 cm 

•  Proton data normalised to dose at 
isocenter (i.e. central axis of patient) 

•  Proton results still consider Q factor 

•  Proton results a factor of 2-3 lower 
than that for a 10x10 cm2 
conventional field 

•  Proton results a comparable to a 
10x10 cm2 conventional field at lateral 
displacement of 30 cm or greater 

[2] E. Klein et al., “Peripheral doses from pediatric IMRT”, Med. Phys., 33, 7, 2006, pp. 
2525-2531 

Are out-of-field doses less of 
an issue for protons? 
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