IN VIVO IMAGING

PROTON BEAM RANGE VERIFICATION WITH PET/CT

Antje-Christin Knopf ^{1/3}

K Parodi², H Paganetti¹, T Bortfeld¹

Siemens Medical Solutions Supports This Project

¹ Department of Radiation Oncology, MGH and Harvard Medical School, Boston, MA 02114

- ² Heidelberg Ion Therapy Center, Heidelberg, Germany
- ³ Department of Medical Physics, DKFZ Heidelberg, Germany

- METHOD → GOAL
- **RESULTS** → PHANTOM PATIENTS

OUTLOOK

CONCLUSION

METHOD → GOAL

RESULTS → PHANTOM PATIENTS

OUTLOOK

CONCLUSION

Why do we want to make that effort?

Optimal treatment

Protons have the superior advantage of a finite range,

but uncertainties compromise this advantage.

Optimal treatment

Since we often don't know the uncertainties we often don't apply the optimal treatment.

Uncertainties can be up to 10 mm. To take full advantage of the superior characteristics of proton beams mm-accurate tools to monitor and control these uncertainties are needed.

CONCLUSION

Procedure

1.

Proton Treatment at the F. H. Burr Proton Therapy Center

Walk the patient to the PET/CT scanner

2.

 \mathbb{N}

PET/CT scan at a Siemens Biograph 64 PET/CT scanner

Nuclear reactions

In this approach we do not use any radioactive tracers but positron emitters, which are produced as a by-product of irradiation with protons.

Data

Data

METHOD → GOAL

RESULTS → PHANTOM PATIENTS

OUTLOOK

CONCLUSION

What do we want to achieve with this data?

Dose verification

- difficult because:
 - no unique correlation between dose and activity distribution
 - patient and tissue specific activity wash-out

Dose verification

- difficult because:
 - no unique correlation between dose and activity distribution
 - patient and tissue specific activity wash-out

Range verification

- promising because:
 - unique correlation between dose and activity range
 - robust range determination through gradient analysis

Range verification

Range verification

Range verification

normalize

Range verification

pointwise

- 20%: sensitive to smoothing of MC profiles
 - sensitive to background noise
- 50%: sensitive to noise in the data

Range verification

shift

more robust strategy for range verifications than a pointwise comparison

METHOD → GOAL

RESULTS \rightarrow PHANTOM PATIENTS

OUTLOOK

CONCLUSION

Is that technical and physical feasible?

Phantom

1.) Homogeneous phantom and simple slab phantom

Parodi et al "**PET/CT imaging for treatment verification after proton therapy- a study with plastic** phantoms and metallic implants", Medical Physics 2007: 34, 319-435

Phantom

1.) Homogeneous phantom and simple slab phantom

Beam Parameter:Slab phantom:one field, 16cm range, 2Gy total doseCylinder:two perpendicular fields, 15cm / 16cmrange, 8Gy total dose

To study:The composition and the total yield of activity that canbeexpected after a proton treatment

Parodi et al "PET/CT imaging for treatment verification after proton therapy- a study with plastic phantoms and metallic implants", Medical Physics 2007: 34, 319-435

Phantom

1.) Homogeneous phantom and simple slab phantom

Results:

 Activity composition: and ¹⁵O Main fraction from $^{11}\text{C},$ minor traces from ^{13}N

 Imaging protocol: For a usual treatment fraction (1-3 Gy) and a delay of about 15 min between treatment and PET imaging 30 min of data acquisition should be sufficient for a mm accurate range monitoring.

Phantom

• 2.) Complex inhomogenous phantom with different angled tissue interfaces

Knopf et al "Quantitative assessment of the physical-potential of proton beam range verification with PET/CT", submitted

Phantom

• 2.) Complex inhomogenous phantom with different angled tissue interfaces

Beam Parameters: One field, 15 cm range, 8 Gy total dose same routine as for patients was performed

To study:

The reproducibility of the method The consistency of the method The sensibility of the method

Knopf et al "Quantitative assessment of the physical-potential of proton beam range verification with PET/CT", submitted

Phantom

- 2.) Complex inhomogenous phantom with different angled tissue interfaces
 Results:
 - Physical feasibilities: Reproducibility of range values within 1mm standard deviation

Consistent range determination within 1 mm standard deviation

PET measurements are sensitive enough to detect millimeter range changes induced by small tissue inhomogeneities.

METHOD → GOAL

RESULTS → PHANTOM PATIENTS

OUTLOOK

CONCLUSION

How does it look in clinical reality?

Patients

		# of patients	# of patients that received 1 field	# of patients that received 2 fields	dose per field [GyE]
	head	11	3	8	0.9-3
	eye	1	1		10
	C-spine	1		1	1
	T-spine	2		2	0.6-1.8
	L-spine	2	2		2
	sacrum	2	1	1	1-2
	prostate	2	2		2
	TOTAL	21	9	12	0.6-10

Patients

• 1.) Head and neck tumor sites

		# of patients	# of patients that received 1 field	# of patients that received 2 fields	dose per field [GyE]
	head	11	3	8	0.9-3
	eye	1	1		10
	C-spine	1		1	1
	r-spine	2		2	0.6-1.8
	L-spine	2	2		2
	sacrum	2	1	1	1-2
	prostate	2	2		2
	TOTAL	21	9	12	0.6-10

Patients

- 1.) Head and neck tumor sites Advantages:
 - few patient motion
 - -> the same immobilization as during the treatment is used
 - rigid target geometry
 - -> small differences in the positioning are taken into account by coregisting planning and PET CT
 - few different tissues
 - -> tissues can be resolved by means of CT numbers
 - -> tissue specific elemental compositions and biol. washout parameters can be assigned in the simulation

Patients

- 1.) Head and neck tumor sites
 Data analysis:
 - At positions where the beam stopped in bone

Patients

1.) Head and neck tumor sites
 Data analysis:

• At positions where the beam stopped shortly behind in bone

Patients

1.) Head and neck tumor sites
 Data analysis:

• At positions where the beam stopped in soft tissue

Patients

1.) Head and neck tumor sites
 Results:

	Number of	Mean agreement between measured and simulated range [mm]			
	profiles	pointwise verification		shift	
		20 %	50%	verification	
Bone	25	2.5	1.2	2.4	
Bone/soft tissue	15	3.8	8.6	2.4	
Soft tissue	30	6.8	3.9	4.3	

- In soft tissue biological washout effects degrade the measured activity distribution and therefore prevent mm-accurate offline PET/CT range verification.
- However offline PET/CT scans permit mm-accurate range verification in well-coregistered bony structures.

• Patients

• 2.) Abdominopelvic tumor sites

	TOTAL	21	9	12	0.6-10	
	prostate	2	2		2	ľ
	sacrum	2	1	1	1-2	
	L-spine	2	2		2	
	T-spine	2		2	0.6-1.8	
	C-spine	1		1	1	
	еуе	1	1		10	
52	head	11	3	8	0.9-3	ì
		# of patients	# of patients that received 1 field	# of patients that recei∨ed 2 fields	dose per field [GyE]	

Patients

- 2.) Abdominopelvic tumor sites Challenges:
 - motion
 - -> breathing and organ motion results in a blurring of the measured activity distribution
 - demanding positioning
 - complex tissue heterogeneities

 tissues like bladder, bone marrow
 and muscle with very different
 elemental compositions and washout
 characteristics can not be resolved by
 CT numbers

bladder ____ bone marrow muscle ____

Patients

- 2.) Abdominopelvic tumor sites Challenges:
 - distal beam end in soft tissue

 prostate patients need to void their bladder between treatment and imaging

Patients

2.) Abdominopelvic tumor sites Results:

- for abdominal tumor sites, lateral blurring due to motion was fount to be up to 25mm where as the lateral conformity for head and neck tumor sides was within 5mm
- For opposed treatment beams range verification was found to be not practicable.
- In abdominal tumor sites, mm-accurate offline PET/CT range verification is not feasible primarily due to patient motion and the position of the distal beam edge in soft tissue.

METHOD → GOAL

RESULTS → PHANTOM PATIENTS

OUTLOOK

CONCLUSION

How can we get further to reach the goal?

Better biological wash-out models

- scanning of high dose patients (>3Gy in a single session)
- high dose translates into an enhanced positron emission
- enables a time analysis of the PET distribution over the 30 min of data acquisition

Measured activity averaged over

improved biological wash-out models

estimate of the improvement of the image quality for an in room PET/CT scanner

In room / online imaging

- Shorter / no delay between irradiation and PET imaging
- Shorter data acquisition

Parodi et al "Comparison between in-beam and offline PET imaging of proton and carbon ion therapeutic irradiation at cyclotron and synchrotron-based facilities, in press

- In room / online imaging
- Online

In room / online imaging

Online

- In room / online imaging
- In room

In room / online imaging

In room

Parodi et al "Comparison between in-beam and offline PET imaging of proton and carbon ion therapeutic irradiation at cyclotron and synchrotron-based facilities, in press

CONCLUSION

CONCLUSION

Proton Therapy seems to be the "standard" treatment of the future

- 1993 **"Is it possible to verify directly a proton-treatment plan using positron emission tomography?**" UCL-Cliniques Universitaires St-Luc, Brussels, **Belgium**
- 1996 **"Proton dose monitoring with PET: quantitative studies in Lucite**" TRIUMF, Batho Biomedical Facility, Vancouver, Canada
- 2000 **"Potential application of PET in quality assurance of proton therapy**" Forschungszentrum Rossendorf, Dresden, **Germany**
- 2006 **"Dose-volume delivery guided proton therapy using beam on-line PET system**" National Cancer Center, Kashiwa, Japan
 - "Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy" Department of Radiation Oncology, MGH, Boston, USA
 - 8 **"Experimental validation of the filtering approach for dose monitoring in proton therapy at low energy'** Department of Physics, University of Pisa, Italy

Thank you for your attention!

