State-of-the-art proton therapy: The physicist's perspective

Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland

State-of-the-art particle therapy: The physicist's perspective

Overview of presentation 1. State-of-the-art proton delivery 2. Current challenges 3. New directions in proton therapy 4. Summary

PAUL SCHERRER INSTITUT

Single passively scattered field

Three passively scattered fields

104

90

80

70

60

50

40

30

Fixed extent SOBP leads to poor sparing of normal tissue proximal to target

Conformation of dose can be improved through the use of multiple fields

Tony Lomax, PTCOG47, Jacksonville, 200

State-of-the-art particle therapy: The physicist's perspective

State-of-the-art particle therapy: The physicist's perspective

A SFUD (single field, uniform dose) plan consists of the addition of one or more individually optimised fields.

Note, each individual field is homogenous across the target volume

State-of-the-art particle therapy: The physicist's perspective

Tony Lomax, PTCOG47, Jacksonville, 2008

PAUL SCHERRER INSTITUT

Intensity Modulated Proton Therapy: The simultaneous optimisation of all Bragg peaks from all incident beams. E.g..

Lomax, Phys. Med. Biol. 44:185-205, 1999

State-of-the-art particle therapy: The physicist's perspective

The three 'orders' of proton therapy compared

State-of-the-art particle therapy: The physicist's perspective

Tony Lomax, PTCOG47, Jacksonville, 2008

PAUL SCHERRER INSTITUT

Overview of presentation 1. State-of-the-art proton delivery 2. Current challenges 3. New directions in proton therapy 4. Summary

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

Range uncertainty

The advantage of protons is that they stop.

The disadvantage of protons is that we don't always know where...

State-of-the-art particle therapy: The physicist's perspective

Tumour shrinkage

Initial Planning CT GTV 115 cc

5 weeks later GTV 39 cc

PAUL SCHERRER INSTITUT

S. Mori, G. Chen, MGH, Boston

State-of-the-art particle therapy: The physicist's perspective

Current challenges: range uncertainty PAUL SCHERRER INSTITUT **Tumour shrinkage Planning CT** CT after 5 weeks Beam stops at distal edge Beam overshoot

S. Mori, G. Chen, MGH, Boston

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

Patient weight changes

3 field IMPT plan to an 8 year old boy

Note, sparing of spinal cord in middle of PTV

Francesca Albertini and Alessandra Bolsi (PSI)

State-of-the-art particle therapy: The physicist's perspective During treatment, 1.5kg weight gain was observed

Nominal plan

Recalculation on new CT

PAUL SCHERRER INSTITUT

CTV	Mean	V90	Spinal cord	Mean	Max
Nominal	96.5%	78%	Nominal	30.0%	74%
New	95.0%	74%	New	28.5%	76%

State-of-the-art particle therapy: The physicist's perspective

CT artefacts

Many patients referred for RT post-operatively and with metal (titanium) stabilisation

How accurately can we calculate proton ranges in such CT data sets?

PAUL SCHERRER INSTITUT

Current challenges: organ motion

Organ motion

What is the effect of organ motion on proton therapy?

4D-CT derived from 4D-MRI

Martin von Siebenthal, Phillipe Cattin, Gabor Szekely, Tony Lomax, ETH, Zurich and PSI, Villigen

State-of-the-art particle therapy: The physicist's perspective

Images courtesy of Thomas Bortfeld, MGH, Boston

State-of-the-art particle therapy: The physicist's perspective

Images courtesy of Thomas Bortfeld, MGH, Boston

State-of-the-art particle therapy: The physicist's perspective

Current challenges: organ motion

PAUL SCHERRER INSTITUT

Organ motion and scanning

A scanned beam in a moving patient.

4D-CT derived from 4D-MRI

Martin von Siebenthal, Phillipe Cattin, Gabor Szekely, Tony Lomax, ETH, Zurich and PSI, Villigen

State-of-the-art particle therapy: The physicist's perspective

Current challenges: organ motion

PAUL SCHERRER INSTITUT

Organ motion and the 'interplay' effect

Nominal (static) dose

State-of-the-art particle therapy: The physicist's perspective

Scanning is particularly sensitive to organ motion

State-of-the-art particle therapy: The physicist's perspective

Overview of presentation 1. State-of-the-art proton delivery 2. Current challenges 3. New directions in proton therapy 4. Summary

State-of-the-art particle therapy: The physicist's perspective

New directions in proton therapy 1. Possible improvements to passive scattering 2. Dealing with range uncertainties

3. Organ motion and scanning

State-of-the-art particle therapy: The physicist's perspective

Field specific hardware for passive scattering

PAUL SCHERRER INSTITUT

Collimator

Compensator

Can these be automated?

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

Proton Multi-leaf collimators

Particle MLC from Chiba (Japan)

 Saves changing collimators every field

• Can be used to 'simulate' scanning

• Could be used to deliver IMPT?

State-of-the-art particle therapy: The physicist's perspective

Proton Multi-leaf collimators

Film dosimetry performed at Loma Linda using MLC and passively scattered proton beam

Shape at surface

Shape after 29cm water

Mike Moyers, LLUMC

State-of-the-art particle therapy: The physicist's perspective

Proton Multi-leaf collimators

Simulated scanning using dynamic MLC's

Energy 4 Energy 5 Energy 6 Proximal conformation

State-of-the-art particle therapy: The physicist's perspective

Tony Lomax, PTCOG47, Jacksonville, 2008

PAUL SCHERRER INSTITUT

Paul Scherrer INSTITUT Proton Multi-leaf collimators

IMPT using dynamic MLC's?

State-of-the-art particle therapy: The physicist's perspective

New directions in proton therapy 1. Possible improvements to passive scattering 2. Dealing with range uncertainties

3. Organ motion and scanning

State-of-the-art particle therapy: The physicist's perspective

Dealing with range uncertainties PAUL SCHERRER INSTITUT Imaging for range **Proton radiography MV-CT Activation PET** Measured PET activation kV-CT Proton radiograph -60 mm -50 50 Π mm Calculated PET activation MV-CT (Hi-Art) **Proton DRR** -60 -40 -20 mm 20 40 60 80 100 50 -50 Π Katia Parodi, Thomas Bortfeld Uwe Schneider, Zurich Ospedale San Rafaele, Milan Alexander Tourovsky, PSI MGH, Boston Francesca Albertini, PSL

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

Range adapted proton therapy

Alessandra Bolsi, PSI

State-of-the-art particle therapy: The physicist's perspective

Range adapted proton therapy

Alessandra Bolsi, PSI

State-of-the-art particle therapy: The physicist's perspective

Tony Lomax, PTCOG47, Jacksonville, 2008

Work of Alessandra Bolsi. PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

Range adapted proton therapy

Alessandra Bolsi, PSI

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

Range adapted proton therapy

Alessandra Bolsi, PSI

State-of-the-art particle therapy: The physicist's perspective

New directions in proton therapy 1. Possible improvements to passive scattering 2. Dealing with range uncertainties

3. Organ motion and scanning

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

Rescanning

Repaint scanned beam many times such that statistics dictate coverage and homogeneity of dose in target (c.f. fractionation)

State-of-the-art particle therapy: The physicist's perspective

Rescanning

Re-scanning in presence of Cos⁴ motion with 1cm amplitude

Marco Schwarz, Sylvan Zenklusen ATREP and PSI

- Cylindrical target volume
- Re-scanned different times to same total dose

PAUL SCHERRER INSTITUT

- Scan times calculated for realistic beam intensities and dead times between spots
- Analysis carried out for different periods of motion
- Not always improving homogeneity with number of re-scans!

State-of-the-art particle therapy: The physicist's perspective

Rescanning The 'synchronicity' effect

- Very preliminary results
- A 'real' effect for perfectly regular breathing?
- Could well be less of an issue when breathing is more irregular
- For regular breathing, could be avoided by selecting the rescanning period to avoid effect or varying period scan-to-scan
- Probably not a big issue in reality

See presentation from Silvan Zenklusen, Saturday

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

Tracking

Track motion of tumour using scanning system based on some anatomical/physiological signal

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

Tumour Tracking

Plot of dose homogeneity as function of RMS position error due to motion and 'imperfect' tracking

Cos⁴ motion with varying detection delays and tracking accuracies

Steven van de Water, PSI/TUDelft

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

Tumour Tracking

Re-tracking – tracking the tumour repeatedly within one fraction

Steven van de Water, PSI/TUDelft

State-of-the-art particle therapy: The physicist's perspective

PSI Gantry 2

Main features:

- Fast upstream energy variation (~150ms for 5mm range step)
- Double magnetic scanning
- Capable of delivering 2Gy/litre in 6s!
- 'Simulated parallel scanning' passive scattering with a scanning gantry
- First patients summer 2009

PAUL SCHERRER INSTITUT

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

The PSI Gantry 2

How it looks now...

... and how it will look by the end of 2008

State-of-the-art particle therapy: The physicist's perspective

PAUL SCHERRER INSTITUT

FIRST BEAM THROUGH THE NEW GANTRY 2 OF PSI E. Pedroni - Paul Scherrer Institute - 17:22, 9. May 2008

...another milestone for the PSI therapy project (A. Lomax, M. Jermann, E. Pedroni, C. Bula, D. Meer, M. Schippers and T. Böhringer) <text>

... the reason for the happiness

State-of-the-art particle therapy: The physicist's perspective

Summary

• Although passive scattering is still the preferred choice for proton therapy, scanning and IMPT will become more widespread in the next years (c.f. MD Anderson)

• To what extent can scattering be improved through the use of automated field hardware (MLC's etc)?

 Range uncertainty and organ motion (particularly for scanning) remain the main challenges to proton therapy and much interesting and exciting work is still to be done in organ management, range imaging and adaptive proton therapy

• The field is ripe for new input, ideas and innovations...