Preliminary Evaluation of Bone Marrow
Suppression in Locally advanced NSCLC patients
treated with Concurrent Chemotherapy and
Proton Therapy (PBT) or IMRT

47th PTCOG, Jacksonville, Florida May 22, 2008 Ritsuko Komaki, M.D. **Professor of Radiation Oncology Gloria Lupton Tennison Distinguished Professorship for** Lung cancer research **UT MDACC**

Background

- Standard of care for locally advanced NSCLC is concurrent CT/XRT
- These patients are at risk of BM toxicity which can lead to
 - Interrupt or lower dose of CT or XRT
 - Hospitalizations
 - Need for Growth Factors to avoid treatment interruption
 - Reduce QOL

Bone Marrow Distribution

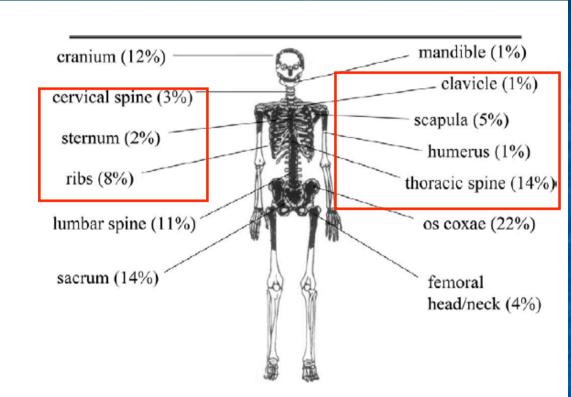


Fig. 1. Distribution of bone marrow in an adult. Adapted, with permission, from Ellis *et al.* (14) and Mauch *et al.* (19).

Thorax - Thoracic Spine + Ribs + Clavicle + Sternum = 25% of BM reserve

Part of these areas are included in the treatment volume, especially for patients with locally advanced disease

Hypothesis

- Proton Beam Therapy (PBT) compared to photons shows lower exit dose and lower integral dose
- This may translate into lower BM toxicity in patients treated with concurrent CT and PBT

Objective

■ To compare BM toxicity in patients with locally advanced NSCLC treated with concurrent CT and either PBT vs. IMRT

METHODS

- Retrospective Study
- From 2002 to 2007
- 106 patients identified
- PBT: 31 patients
- IMRT: 75 patients
- All patients after 2004 had treatment planning with 4D CT

Methods: Criteria

- Inclusion Criteria:
 - Concurrent Chemotherapy
 - No history of prior major thoracic RT
 - **Dose ≥ 60 Gy (CGE for protons)**
- **Exclusion Criteria:**
 - IMRT + 3D-CRT or IMRT + PBT

Methods: Toxicity

- Common Terminology Criteria (CTC) version 3.0 was used to grade toxicity
- Acute toxicity
- Time Frame: from start of XRT to 2 months months after completion of XRT treatment
 - Hemoglobin
 - Platelets
 - WBC/Neutrophils/Lymphocytes
 - Fatigue

Methods: Toxicity

Common Terminology Criteria (CTC) version 3.0 was used to grade toxicity

		BLOOD/E	BONE MARROW		Pa	ge 1 of 1	
		Grade					
Adverse Event	Short Name	1	2	3	4	5	
Hemoglobin	Hemoglobin	<lln -="" 10.0="" dl<br="" g=""><lln -="" 6.2="" l<br="" mmol=""><lln -="" 100="" g="" l<="" td=""><td><10.0 – 8.0 g/dL <6.2 – 4.9 mmol/L <100 – 80g/L</td><td><8.0 – 6.5 g/dL <4.9 – 4.0 mmol/L <80 – 65 g/L</td><td><6.5 g/dL <4.0 mmol/L <65 g/L</td><td>Death</td></lln></lln></lln>	<10.0 – 8.0 g/dL <6.2 – 4.9 mmol/L <100 – 80g/L	<8.0 – 6.5 g/dL <4.9 – 4.0 mmol/L <80 – 65 g/L	<6.5 g/dL <4.0 mmol/L <65 g/L	Death	
Neutrophils/granulocytes (ANC/AGC)	Neutrophils	<lln 1500="" =="" mm<sup="">3 <lln 1.5="" 10<sup="" =="" x="">9 /L</lln></lln>	<1500 – 1000/mm ³ <1.5 – 1.0 x 10 ⁹ /L	<1000 – 500/mm ³ <1.0 – 0.5 x 10 ⁹ /L	<500/mm ³ <0.5 x 10 ⁹ /L	Death	
Platelets	Platelets	<lln 75,000="" =="" mm<sup="">3 <lln 10<sup="" 75.0="" =="" x="">9 /L</lln></lln>	<75,000 – 50,000/mm³ <75.0 – 50.0 x 10 ⁹ /L	<50,000 – 25,000/mm³ <50.0 – 25.0 x 10° /L	<25,000/mm ³ <25.0 x 10 ⁹ /L	Death	
Leukocytes (total WBC)	Leukocytes	<lln -="" 3000="" mm<sup="">3 <lln -="" 10<sup="" 3.0="" x="">9 /L</lln></lln>	<3000 – 2000/mm ³ <3.0 – 2.0 x 10 ⁹ /L	<2000 – 1000/mm ³ <2.0 – 1.0 x 10 ⁹ /L	<1000/mm ³ <1.0 x 10 ⁹ /L	Death	
Lymphopenia	Lymphopenia	<lln -="" 800="" mm<sup="">3 <lln -="" 0.8="" 10<sup="" x="">9 /L</lln></lln>	<800 – 500/mm ³ <0.8 – 0.5 x 10 ⁹ /L	<500 – 200 mm ³ <0.5 – 0.2 x 10 ⁹ /L	<200/mm ³ <0.2 x 10 ⁹ /L	Death	

Methods: Toxicity

 Common Terminology Criteria (CTC) version 3.0 was used to grade toxicity

504646464646464646466666666666666666666	CONSTITUTIONAL SYMPTOMS Page 1 of 2								
Grade									
Adverse Event	Short Name	1	1 2 3 4						
Fatigue (asthenia, lethargy, malaise)	Fatigue	Mild fatigue over baseline	Moderate or causing difficulty performing some ADL	Severe fatigue interfering with ADL	Disabling	_			

ADL: Activity of Daily Life

Patient Characteristics

Patient Characteristics	PBT + Concurrent CT	IMRT + Concurrent CT	p-value
	(N=31)	(N=75)	
Gender			0.857
Male	20	47	
Female	11	28	
Age		9年5月1日日日	0.096
Median (Range)	64.4 (45-78)	62 (38-82)	
Wt Loss			0.118
<5 %	25	49	
>= 5%	6	26	
Prior Malignancy			0.001
Yes	14	10	图 经经济的 医皮肤
No	17	65	

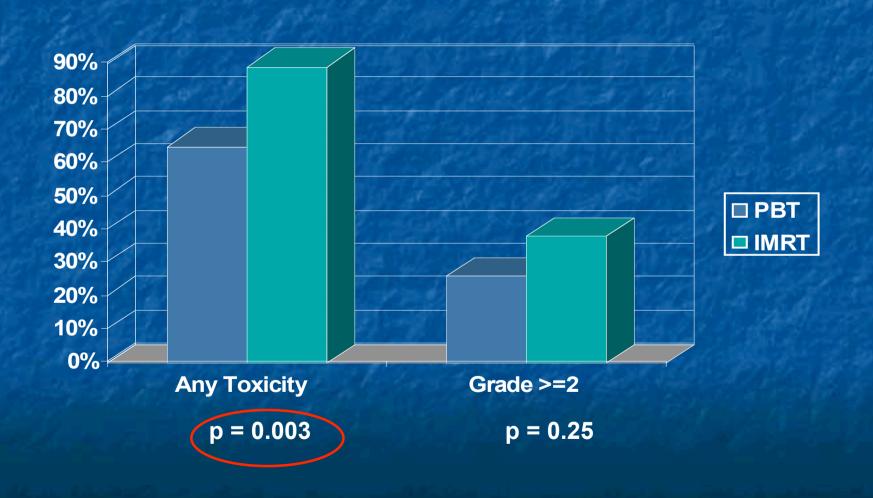
Tumor Characteristics

Tumor Characteristics	PBT + Concurrent CT (N=31)	IMRT + Concurrent CT (N=75)	p-value
Histology			0.001
Squamous	19	20	
Non-squamous	12	55	
Clinical Stage		文学的原则是 经工程	0.061
IIB	1	4	Most patient
IIIA	10	15	had stage III disease
IIIB	11	42	THE PROPERTY.
IV	2	9	
Recurrence	8	5	
Tumor Location	张罗科亚等的企	學不是OEAFA(1998)	0.413
Left Lung	13	25	深深多的
Right Lung	18	47	
Mediastinum		3	

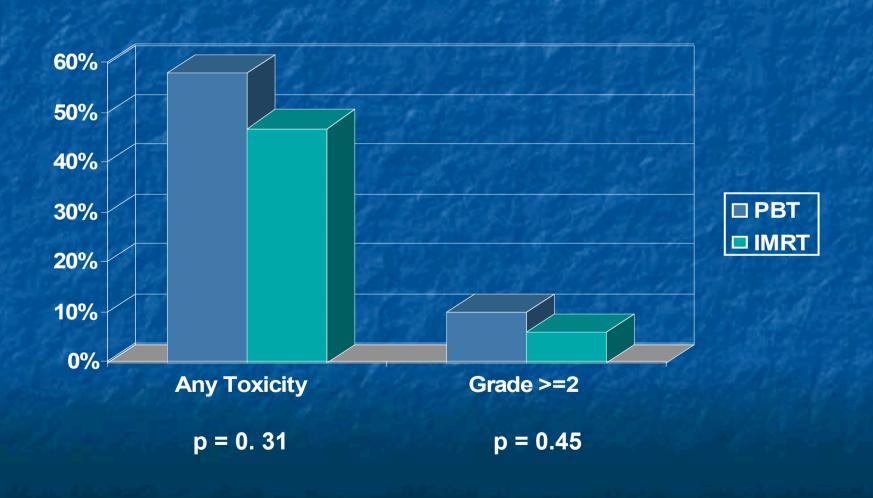
Chemotherapy Regimen

	PBT	IMRT
	N = 31	N = 75
Induction CT	13 (42%)	37 (49%)
Concurrent CT	31	75
Carbo + Taxol	19 (61%)	42 (56%)
Cis + Taxol	6	4
Carbo + Etop	4	8
Cis + Etop	0	2
Other	2	19
Adjuvant CT	8 (26%)	18 (25%)

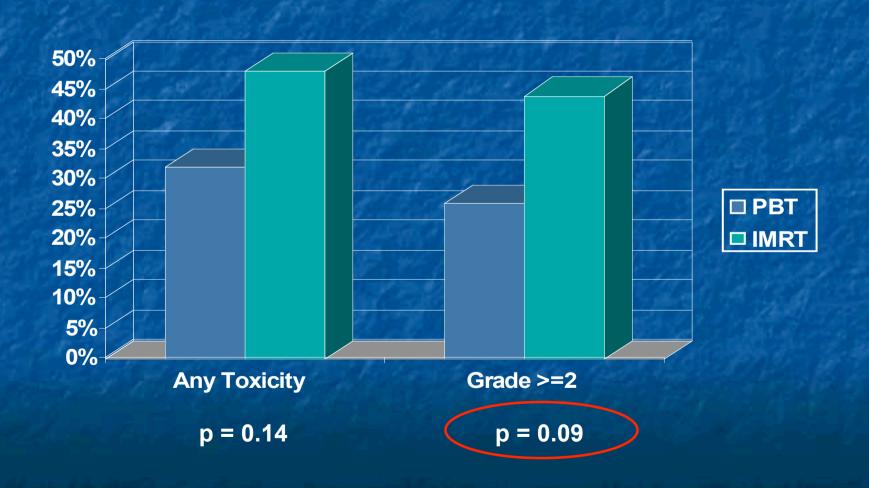
Most common concurrent regiment was Carbo/Taxol

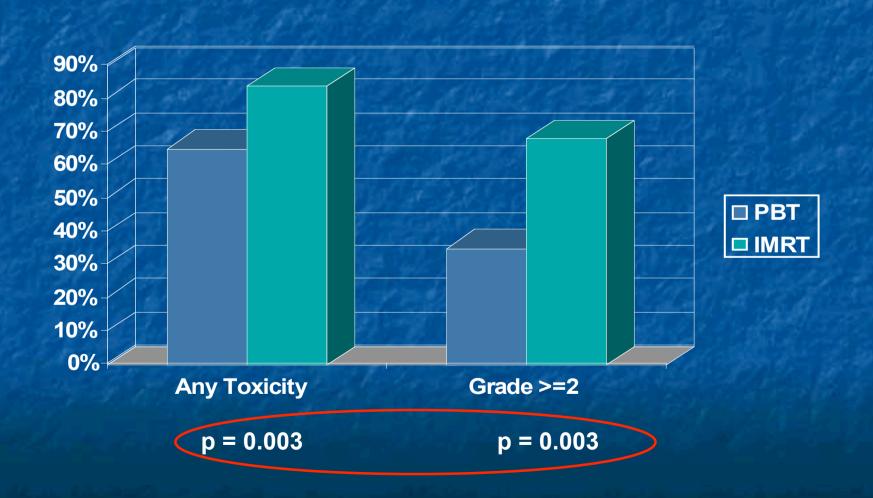

Mean and Range Baseline Hematologic Values for PBT and IMRT Patients

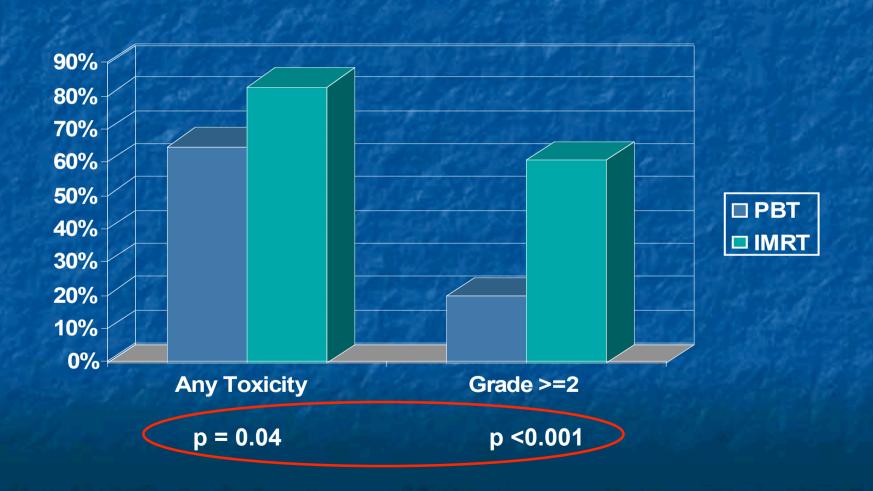
	PBT	IMRT	P-value
Hemoglobin	13.3 (10.0-16.0)	12.5 (8.8-15.6)	0.01
Platelets	290.7 (66-640)	384.8 (247-703)	0.25
Neutrophils	5.7 (1.6-12.5)	6.5 (2.2-121.4)	0.35
Absolute Lymphocytes	1.4 (0.5-2.9)	1.7 (0.3-3.8)	0.11
White Blood Count	7.9 (3.1-12.7)	9.0 (3.1-26.9)	0.32


Results

	PBT	IMRT	p value
Median f/up Range	9.5 mo (range, 1.6 -16.1)	9.8 mo (range 1.4 – 32.3)	
Median KPS	80	80	
Median GTV volume	93.6 ml (range, 13 – 431 ml)	247.7 ml (range, 21 - 818 ml)	<.0001
Median Dose	74 CGE (range, 63 – 74 CGE) <on protocol=""></on>	63 Gy (range, 60 -76 Gy)	


Hemoglobin Toxicity PBT versus IMRT Patients


Platelet Toxicity PBT versus IMRT Patients


Neutrophil Toxicity PBT versus IMRT Patients

WBC Toxicity PBT versus IMRT Patients

Fatigue Toxicity PBT versus IMRT Patients

Tumor Volume and BM toxicity

GTV (cc)	N	N (%) of ≥2 Grade Hemoglobin Events	P value	N (%) of ≥2 Grade Platelets Events	P value
<u><</u> 100	PBT = 22 IMRT = 9	16 (72.7) 7 (87.5)	0.40	6 (36.4) 8 (75.0)	0.06
<u><</u> 200	PBT = 28 IMRT = 30	8 (28.6) 8 (27.6)	0.93	11(39.3) 21(75.0)	0.007
<u><</u> 300	PBT = 29 IMRT = 43	8 (27.6) 13 (30.0)	0.76	11 (37.9) 29 (70.7)	0.006
<u><</u> 400	PBT = 30 IMRT = 48	8 (26.7) 13 (37.7)	0.35	11(36.7) 33 (73.3)	0.002
≤ 500	PBT = 31 IMRT = 56	8 (26.7) 20 (37.7)	0.31	11(35.5) 29 (69.1)	0.004

Tumor Volume and BM toxicity

GTV (cc)	N	N(%) of ≥2 Grade Neutrophil Events	P valu e	N(%) of ≥2 Grade WBC Events	P valu e	% of ≥2 Grade Abs. Lymphocyte Events	P value
<=100	PBT = 22 IMRT = 9	7(31.8) 4(44.4)	0.51	2(9.1) 1(11.1)	0.85	13(61.9) 6(85.7)	0.24
<=200	PBT = 28 IMRT = 30	8(28.6) 13(44.8)	0.20	2(7.1) 2(6.7)	0.94	18(64.3) 25(89.3)	0.03
<=300	PBT = 29 IMRT = 43	8(27.6) 17(40.5)	0.26	3(10.3) 2(4.7)	0.35	18(62.1) 38(92.7)	0.002
<=400	PBT = 30 IMRT = 48	8(26.7) 21(45.7)	0.10	3(7.5) 2(4.3)	0.52	19(63.3) 42(93.3)	0.001
<=500	PBT = 31 IMRT = 56	8(26.7) 25(47.2)	0.07	3(9.7) 3(5.6)	0.48	20(64.5) 47(92.2)	0.002

Limitations

- Retrospective Study
- Data on blood transfusions, growth factors, treatment break for chemo, or dose reduction in chemo not available for all patients
 - Data is being collected

Conclusions

- In patients with locally advanced NSCLC treated with PBT or IMRT with concurrent CT, our preliminary evaluation shows that:
 - PBT significantly reduced any Hgb. toxicity compared to IMRT.
 - PBT significantly reduced frequency of fatigue compared to IMRT.
 - PBT significantly reduced any and grade >2
 WBC toxicity compared to IMRT.
 - PBT and IMRT showed no difference in grade
 2 platelet toxicity.
 - Breakdown by tumor size showed that PTB significantly reduced grade > 2 Plt. & Lymph. toxicities compared to IMRT.

Future

- Prospective Randomized Study
 3DCRT vs. IMRT vs. PTB
 has been activated and accruing patients with stage III NSCLC
- All patients get concurrent chemotherapy for this study
- Target:168 patients
- Endpoint : Comparison of NTCP

Acknowledgements

- Thoracic RadiationOncology at MDACC
 - Samir V Sejpal, MD
 - James D Cox, MD
 - Zhongxing Liao, MD
 - Joe Y Chang, MD
 - Mary K Bucci, MD
 - Thomas M. Guerrero, MD, PhD
 - Melenda Jeter, MD, MPH
 - Michael O'Reilly, MD
 - Mary F.
 - McAleer, MD, PhD

- Statistics and Data Collection
 - Pamela Allen, PhD
 - Xiong Wei, MD
- Physics and Dosimetry
 - Richard Amos, MS
 - Cody N Crawford, MS
 - Mayankkumar Amin, MS
 - Beverly Reily, MS
 - Michael Gillin,PhD
 - Al Smith,PhD
 - Radhe Mohan,PhD