Patient Specific QA

Hsiao-Ming Lu, Ph.D. Francis H. Burr Proton Therapy Center Massachusetts General Hospital Boston, MA

MASSACHUSETTS GENERAL HOSPITAL $C \land n \land c \in r C \in n \land t \in r^{*}$

 $Dana-Farber\,/\,Partners\,\,CancerCare$

MASSACHUSETTS 🛛 📂 DANA-FARBER 🧐 BRIGHAM AND GENERAL HOSPITAL

Learning Objectives

- 1. Patient specific quality assurance (QA) for passively scattered beams
- 2. QA challenges for pencil beam scanning (PBS)
- 3. In-vivo dose verification techniques

DANA-FARBER / PARTNERS CANCERCARE

💋 DANA-FARBER

BRIGHAM AND WOMEN'S HOSPITAI

MASSACHUSETTS

GENERAL HOSPITAL

What Needs QA

"AMARA" or "ALARA"

As Much/Little As Reasonably Achievable/Acceptable

Not Exactly Contradicting!

MASSACHUSETTS GENERAL HOSPITAL $C \land n \land c \in r C \in n \land t \in r^{*}$

Dana-Farber/Partners CancerCare

MASSACHUSETTS 🛛 🗭 DANA-FARBER 🧐 BRIGHAM AND GENERAL HOSPITAL

QA Evolution

MASSACHUSETTS GENERAL HOSPITAL $C \cap C \in R \subset C \in N \cap T \in R^*$

Dana-Farber / Partners CancerCare

MASSACHUSETTS CANA-FARBER

QA for Passive Scattering

DANA-FARBER / PARTNERS CANCER CARE

MASSACHUSETTS DANA-EARBER S BRI GENERAL HOSPITAL PCANAER INSTITUTE

Passive Scattering

Treatment plan specifies:

Aperture, compensator, range, mod, output factor

MASSACHUSETTS GENERAL HOSPITAL \mathbf{C} A N C E R \mathbf{C} E N T E R^{**}

DANA-FARBER / PARTNERS CANCERCARE

MASSACHUSETTS GENERAL HOSPITAL BRIGHAM AND WOMEN'S HOSPITAL DANA-FARBER

Treatment Configuration

MASSACHUSETTS GENERAL HOSPITAL $C \in R \subset E \in C \in R$

DANA-FARBER / PARTNERS CANCERCARE

MASSACHUSETTS DANA-FARBER GENERAL HOSPITAL PCANGER INSTITUTE

Aperture

Physical Verification:
Tolerance < 0.5 mm
Imaging Verification:
Tolerance < 1 mm

Dana-Farber / Partners CancerCare

BRIGHAM AND WOMEN'S HOSPITAL

MASSACHUSETTS CANA-FARBER GENERAL HOSPITAL

Range Compensator

Range in patient depends on thickness $R_p(x, y) = R_{beam} - T(x, y)$

Check T(x,y) at a selected points

Modern technology? Laser, ultrasound, X-ray transmission,

MASSACHUSETTS GENERAL HOSPITAL $C \cap C \cap C \cap C \cap T \cap C$

 $D \verb+ana-Farber/Partners CancerCare$

BRIGHAM AND WOMEN'S HOSPITAL

MASSACHUSETTS DANA-FARBER GENERAL HOSPITAL

Range and Modulation

Two definitions: M90 (90%-90%) and M98 (98%-90%)

MASSACHUSETTS GENERAL HOSPITAL $C \land n \land c \in r \land C \in n \land t \in r^{*}$

Dana-Farber / Partners CancerCare

MASSACHUSETTS 📄 DANA-FARBER 🦉 🕅 🖤

M90 versus M98

- M90 -- historical, M98 -- clinically relevant
- Large uncertainties in M90 for large mod
- M90 value may be larger than range
 → impossible to verify

MASSACHUSETTS GENERAL HOSPITAL $C = R C = R T = R^{**}$

Dana-Farber / Partners CancerCare

MASSACHUSETTS GENERAL HOSPITAL

Measuring Depth-Dose

Sampling interval $t_2 - t_1 = nT$ N = 2, $\delta t < 1$ ms

Lu, Med. Phys. 33 (7), 2006

MASSACHUSETTS GENERAL HOSPITAL $C = R C = R T = R^{**}$

Dana-Farber/Partners CancerCare

MASSACHUSETTS POINTAL PANA-FARBER CANCER LASTITUTE

Measuring Depth-Dose

- Multi-Layer Ionization Chamber (MLIC)
- 64 plates with 8 chambers per cm
- Cover 8 cm depth

http://physics.harvard.edu/~gottschalk

MASSACHUSETTS GENERAL HOSPITAL $C = R C = R T = R^{**}$

DANA-FARBER / PARTNERS CANCERCARE

S BRIGHAM AND WOMEN'S HOSPITAL

MASSACHUSETTS CANA-FARBER GENERAL HOSPITAL

Measuring Output Factor MU chambers Isocenter

Output factor depends on ratio r = (R-M)/M

Kooy et al, PMB 48, 2003

MASSACHUSETTS GENERAL HOSPITAL $C = R C = R T = R^*$

Dana-Farber/Partners CancerCare

MASSACHUSETTS E DANA-FARBER GENERAL HOSPITAL

Measuring Output Factor

With aperture and compensator?

MASSACHUSETTS GENERAL HOSPITAL $C \text{ a n } C \text{ e r } C \text{ e n } T \text{ e } \mathbb{R}^{m}$

Dana-Farber / Partners CancerCare

GENERAL HOSPITAL PANA-FARBER

Field Size Effect

Pencil beam calculation (Xio, CMS, Inc):

Depth Dose

Lateral Profile

$\begin{array}{c} \text{MASSACHUSETTS GENERAL HOSPITAL} \\ C \text{ANCER} C \text{ENTER}^* \end{array}$

DANA-FARBER / PARTNERS CANCERCARE

MASSACHUSETTS GENERAL HOSPITAL GANGER INSTITUTE

Field Size Effect

Measured output change for small field sizes

Go to poster:

"Field Size Dependence of the Output Factor in Proton Radiotherapy" Juliane Daartz, Martijn Engelsman, Marc Bussiere

MASSACHUSETTS GENERAL HOSPITAL C A N C E R C E N T E R

$Dana-Farber\,/\,Partners\,\,CancerCare$

MASSACHUSETTS 🛛 🔊 DANA-FARBER 🏾 🕙 BRIG General Hospital 🛛 🎓 cancer institute

Compensator Effect

deep and narrow

Narrow part equivalent to small field

MASSACHUSETTS GENERAL HOSPITAL $C = R C = R T = R^{*}$

 $D \verb+ana-Farber/Partners C \verb+ancerCare$

MASSACHUSETTS DANA-FARBER S BRIC GENERAL HOSPITAL PCANOR INSTITUTE

Information and Work Flow

Statistics leads to confidence!

MASSACHUSETTS GENERAL HOSPITAL $C = R C = R T = R^{m}$

 $Dana-Farber\,/\,Partners\,\,CancerCare$

MASSACHUSETTS 🛛 🗭 DANA-FARBER 🤄 BRIGHAM AND GENERAL HOSPITAL

Understanding → Less QA

- Identify and correct system instabilities
- Establish model for output prediction
- Use M98 for SOBP specification

Full prediction of SOBP distribution No more evening field cals!

Go to poster:

"A Complete Predictive Model for SOBP Field Delivery" Martijn Engelsman, Hsiao-Ming Lu, David Herrup, Hanne Kooy

MASSACHUSETTS GENERAL HOSPITAL $C = R C = R T = R^{m}$

 $D \verb+ana-Farber/Partners CancerCare$

🕖 DANA-FARBER

BRIGHAM AND WOMEN'S HOSPITAI

MASSACHUSETTS

What to do for PBS?

DANA-FARBER / PARTNERS CANCERCARE

MASSACHUSETTS CANA-FARBER GENERAL HOSPITAL

Pencil Beam Scanning

Pencil specification:

Particle energy (E), Particle count (N), Spot size (σ), trajectory (magnet settings)

MASSACHUSETTS GENERAL HOSPITAL $C = R C = R T = R^*$

 $Dana-Farber \, / \, Partners \, \, Cancer Care$

MASSACHUSETTS 🛛 📂 DANA-FARBER 🤄 BRIGHAM AND CONCERNISTICETE

Delivery Methods

Uniform scanning (wobbling)

 fixed scan paths, beam current constant over each layer, fixed range shift from layer to layer, use aperture and compensator

Spot scanning

 treat one spot at a time, beam off between spots, arbitrary range shift between layers

Dynamic scanning

 Beam non-stop within layer, customized scan paths, customized beam current modulation within layer, repainting

MASSACHUSETTS GENERAL HOSPITAL C A N C E R C E N T E R[™] $Dana-Farber\,/\,Partners\,\,CancerCare$

DANA-FARBER SRIGHAM AND WOMEN'S HOSPITAL

MASSACHUSETTS GENERAL HOSPITAL

Getting Started

- Understand system capability
- Analyze potential risks
- Develop acceptance standards
- Develop system QA tasks
- Define patient specific QA accordingly
- Measure, analyze, and repeat!

Remember how much you did for IMRT?

MASSACHUSETTS GENERAL HOSPITAL C A N C E R C E N T E R $D \verb+ana-Farber/Partners C \verb+ancerCare$

💋 DANA-FARBER

BRIGHAM AND WOMEN'S HOSPITAI

MASSACHUSETTS

ENERAL HOSPITAL

More than IMRT QA

Each layer has own "fluence map" Standard IMRT QA (output and a 2D distribution) Not enough!

2D check for IMRT

One layer off by 8 mm

MASSACHUSETTS GENERAL HOSPITAL CANCERCENTER"

DANA-FARBER / PARTNERS CANCERCARE

MASSACHUSETTS 🛛 🗭 DANA-FARBER 🤄 BRIGHAM AND GENERAL HOSPITAL

In-Vivo Dose Verification

DANA-FARBER / PARTNERS CANCER CARE

MASSACHUSETTS ENAL-EARBER S BRIG GENERAL HOSPITAL EARCHART WOM

Sources of Uncertainty

Planning CT HU conversion to stopping power Artifact due to metallic implants Setup errors Variations in position and posture Compensator-patient misalignment Organ motion Lung, liver, pancreas, etc.

MASSACHUSETTS GENERAL HOSPITAL C A N C E R C E N T E $\mathbb{R}^{\mathbb{Z}}$ $D \verb+ana-Farber/Partners C \verb+ancerCare$

MASSACHUSETTS 📄 DANA-FARBER 🧐 BRIGHAM AND GENERAL HOSPITAL 📄 CANGERIASTITETE

Point Dose Method

Widely practiced in photon/electron therapy

Detectors: MOSFET TLD Diodes

Locations: Surface Cavity Entrance Exit

DVS, implants with wireless reading

MASSACHUSETTS GENERAL HOSPITAL C A N C E R C E N T E R[™]

Dana-Farber / Partners CancerCare

GENERAL HOSPITAL

Photon Fields

Measure at one depth, know doses at all depths

MASSACHUSETTS GENERAL HOSPITAL CANCERCENTER

DANA-FARBER / PARTNERS CANCER CARE

MASSACHUSETTS CANCERIANTELUTE

For Protons? Not So Fast! Full dose at point A, but zero dose at point B!

Also need residual proton range at point A

MASSACHUSETTS GENERAL HOSPITAL CANCERCENTER[™]

 $D \verb+ana-Farber/Partners CancerCare$

MASSACHUSETTS

GENERAL HOSPITAL

DANA-FARBER 🤍 🍯 BRIGHAM AND CARGER INSTITUTE

A Potential Method for DS Beam

MASSACHUSETTS GENERAL HOSPITAL $C A N C E R C E N T E R^*$

DANA-FARBER / PARTNERS CANCERCARE MASSACHUSETTS GENERAL HOSPITAL DANA-FARBER

PET for Dose Verification

- Proton and heavy ion beams cause nuclear fragmentation reactions
- Products include positron emitters $^{11}C (T_{1/2}=20.3 \text{ min}), ^{15}O (T_{1/2}=122 \text{ s})$
- Emitters stay at reaction sites
- Activity related to dose distribution

PET image → Dose distribution?

 $D \verb+ana-Farber/Partners CancerCare$

MASSACHUSETTS 📄 DANA-FARBER 🧐 BRIGHAM AND GENERAL HOSPITAL 📄 CANGERIASTITETE

Activity for Bragg Peak

Monte-Carlo simulations (FLUKA) for proton and carbon beam

(Parodi and Enghardt, Phys. Med. Biol. 45, 2000)

MASSACHUSETTS GENERAL HOSPITAL $C = R C = R T = R^{m}$

$D \verb+ana-Farber/Partners C \verb+ancerCare$

MASSACHUSETTS POINTAL PANA-FARBER

Activity for SOBP

Measured in polyethylene (PE) phantom

Depth Distribution

Lateral Distribution

(Nishio et al., Med. Phys. 32, 2005)

MASSACHUSETTS GENERAL HOSPITAL C A N C E R C E N T E R

DANA-FARBER / PARTNERS CANCER CARE

MASSACHUSETTS CANA-FARBER GENERAL HOSPITAL FOR CANAFRANCE

Activity Related to Dose

- But, activity is not equal to dose
- Monte-Carlo (MC) simulations can compute both dose and activity distributions
- Compare simulated and measured activity distribution to confirm beam range, dose

Dose vs MC vs PET

Dana-Farber / Partners CancerCare

MASSACHUSETTS 🛛 🗭 DANA-FARBER 🧐 BRIGHAM AND CONCREMENTAL FOR WOMEN'S HOSPITAL

The Process

- Emitter half lives $T_{1/2}=20.3 \text{ min for }^{11}\text{C}$ $T_{1/2}=122 \text{ s for }^{15}\text{O}$ $(T_{1/2}=110 \text{ min for }^{18}\text{F})$
- In-beam imaging (GSI)
- Post treatment PET/CT within 20 min (MGH)

MASSACHUSETTS GENERAL HOSPITAL $C = R C = N T = R^{m}$

DANA-FARBER / PARTNERS CANCERCARE

MASSACHUSETTS CANCELISETTE GENERAL HOSPITAL

The Ultimate Proof

Must go to presentation: "In-vivo Imaging in Particle Therapy" Antje Knopf, 4:15PM, Friday, May 23, 2008

MASSACHUSETTS GENERAL HOSPITAL C A N C E R C E N T E R

$Dana-Farber\,/\,Partners\,\,CancerCare$

MASSACHUSETTS DANA-FARBER 🕤 BRIG General Hospital 🖻 cancer institute

Thank You

DANA-FARBER / PARTNERS CANCER CARE

MASSACHUSETTS DANA-FARBER S BRIGH