Monte Carlo methods in proton beam radiation therapy

Harald Paganetti

Introduction

Monte Carlo Probability Density Function expresses the relative likelihood that a variable will have a certain value

Electromagnetic energy loss of protons

ntroduction

MGH

1811

Nuclear interactions of protons

Elastic nuclear collision (large θ) Inelastic int.

All interaction events are simulated in chronological succession:

• The method is nominally exact (for energies higher than ~ 1 keV)

• Feasible only for photons and low-energy electrons and positrons

High-energy electrons and positrons are more difficult...

CERN 27/06/2006

MGH 1811

• etc

Condensed history algorithms group many charged particles track segments into one

single 'condensed' step

grouped collisions

- elastic scattering on nucleus multiple Coulomb scattering
 soft inelastic collisions
 - collision stopping power

discrete collisions

- 'hard' δ-ray production energy > cut
- 'hard' bremstrahlung emission
 - energy > cut
- etc

Monte Carlo applications to proton radiation therapy

Detector simulation
Treatment head design
Shielding
Quality assurance
Patient dose calculations

Treatment head simulation Patient (CT) simulations Clinical implementation

Treatment head essentials (Example: Francis H Burr Proton Therapy Center) **Range Modulator Wheels** 1st Scatterers 2nd Scatterers **Aperture, Compensator Scanning Magnets**

reatment Head Simulation

MGH ¹⁸¹¹

Treatment head details (Example: Francis H Burr Proton Therapy Center)

Monte Carlo model of the nozzle (~1000 objects)

Freatment Head Simulation

Range Modulator Wheel Issues

1. Beam Gating

2. Beam Current Modulation

VE RI ES

150

200

reatment Head Simulation

Aperture and Compensator Monte Carlo simulation based on milling machine files

Scanning Magnet simulation (can be modeled "geometrically")

Parameters to characterize the beam at treatment head entrance

Beam size and spread
 Beam angular spread
 Beam energy (range!)
 Beam energy spread

(IC measurement) (manufacturer info) (control system) (manufacturer info, measured)

Are these parameters correlated ?

"Commissioning" of the Monte Carlo

reatment Head Simulatior

Example: Quality Assurance / Tolerance Studies Alignment of second scatterer

VE RUES

MGH

1811

Absolute dosimetry (output factor prediction) by simulating the ionization chamber output charge

CT conversion

Photon Analyt. Planning System HU versus rel. electron density → Dose-to-water

Proton Analyt. Planning System HU versus rel. stopping power → Dose-to-water

Monte Carlo HU versus mass density HU versus material → Dose-to-medium (tissue

– HU conversion –

Grou	p HU range	Density	y Density Material													
		[g/cm3]	correction	composition weights [%]												
		(center o	of HU bin)	Н	С	Ν	0	Na	Mg	P	S	Cl	Ar	Κ	Ca	Ti
1	[;-951]	0.0270	1.051			75.5	5 23.2						1.3			
2	[-950 ; -121]	0.4800	0.977	10.3	10.5	3.1	74.9	0.2		0.2	0.3	0.3		0.2		
3	[-120;-83]	0.9264	0.948	11.6	68.1	0.2	19.8	0.1			0.1	0.1				
4	[-82;-53]	0.9577	0.958	11.3	56.7	0.9	30.8	0.1			0.1	0.1				
5	[-52;-23]	0.9845	0.968	11.0	45.8	1.5	41.1	0.1		0.1	0.2	0.2				
6	[-22;7]	1.0113	0.976	10.8	35.6	2.2	50.9			0.1	0.2	0.2				
7	[8;18]	1.0296	0.983	10.6	28.4	2.6	57.8			0.1	0.2	0.2		0.1		
8	[19 ; 79]	1.0609	0.993	10.3	13.4	3.0	72.3	0.2		0.2	0.2	0.2		0.2		
9	[80 ; 119]	1.1199	0.971	9.4	20.7	6.2	62.2	0.6			0.6	0.3				
10	[120 ; 199]	1.1117	1.002	9.5	45.5	2.5	35.5	0.1		2.1	0.1	0.1		0.1	4.5	
11	[200 ; 299]	1.1650	1.005	8.9	42.3	2.7	36.3	0.1		3.0	0.1	0.1		0.1	6.4	
12	[300 ; 399]	1.2244	1.010	8.2	39.1	2.9	37.2	0.1		3.9	0.1	0.1		0.1	8.3	
13	[400 ; 499]	1.2834	1.014	7.6	36.1	3.0	38.0	0.1	0.1	4.7	0.2	0.1			0.1	
14	[500 ; 599]	1.3426	1.018	7.1	33.5	3.2	38.7	0.1	0.1	5.4	0.2				11.7	
15	[600 ; 699]	1.4018	1.021	6.6	31.0	3.3	39.4	0.1	0.1	6.1	0.2				13.2	
16	[700 ; 799]	1.4610	1.025	6.1	28.7	3.5	40.0	0.1	0.1	6.7	0.2				14.6	
17	[800 ; 899]	1.5202	1.030	5.6	26.5	3.6	40.5	0.1	0.2	7.3	0.3				15.9	
18	[900 ; 999]	1.5794	1.033	5.2	24.6	3.7	41.1	0.1	0.2	7.8	0.3				17.0	
19	[1000 ;1099]	1.6386	1.035	4.9	22.7	3.8	41.6	0.1	0.2	8.3	0.3				18.1	
20	[1100 ; 1199]	1.6978	1.038	4.5	21.0	3.9	42.0	0.1	0.2	8.8	0.3				19.2	
21	[1200 ; 1299]	1.7570	1.041	4.2	19.4	4.0	42.5	0.1	0.2	9.2	0.3				20.1	
22	[1300 ; 1399]	1.8162	1.043	3.9	17.9	4.1	42.9	0.1	0.2	9.6	0.3				21.0	
23	[1400 ; 1499]	1.8754	1.046	3.6	16.5	4.2	43.2	0.1	0.2	10.0	0.3				21.9	
24	[1500 ; 1599]	1.9346	1.048	3.4	15.5	4.2	43.5	0.1	0.2	10.3	0.3				22.5	
25	[1600 ; 1999]	2.0826	1.042	3.4	15.5	4.2	43.5	0.1	0.2	10.3	0.3				22.5	
26	[2000 ; 3060]	2.4655	1.049	3.4	15.5	4.2	43.5	0.1	0.2	10.3	0.3				22.5	
27	[3061 ;]	4.5400	1.000													100.0

Patient information

Example: CT scan: 134 CT slices, 512 × 512 voxels/slice 0.488 mm × 0.488 mm × 1.25/2.5 mm

Challenge 1: - Memory Consumption Challenge 2: - Speed (many boundary crossings)

GUI program

Clinical Implementation

VERITA

Example 1

Case 1: Para-spinal tumor 176 x 147 x 126 slices voxels: 0.932 x 0.932 x 2.5-3.75 mm³

Example 2

Case 2: Maxillary sinus 121x121x101 slices voxels: 0.656 x 0.656 x 1.25-3.75 mm³

50% lateral penumbra matched to — 50% distal fall-off

MGH

Patient Dose Calculations

10 Gy(RBE)
20 Gy(RBE)
30 Gy(RBE)
40 Gy(RBE)
50 Gy(RBE)
60 Gy(RBE)
65 Gy(RBE)
70 Gy(RBE)
75 Gy(RBE)

-8 Gy(RBE) -6 Gy(RBE) -4 Gy(RBE) -2 Gy(RBE) +2 Gy(RBE) +4 Gy(RBE) +6 Gy(RBE) +8 Gy(RBE)

Clinical Example:

VERITAS

Conclusion

Monte Carlo simulations of the treatment head are useful for Treatment head design Quality assurance Absolute dosimetry Monte Carlo dose calculation can benchmark analytical methods Monte Carlo is already fast enough for dose re-calculation Monte Carlo is not (yet) fast enough for treatment planning

Acknowledgements

Martijn Engelsman Cindy Hancox Hongyu Jiang Tom Madden Katia Parodi Christina Zacharatou Jarlskog Roelf Slopsema

NIH support:

P01 CA21239 R01 CA111590 R01 CA116743