

Proton Radiation Therapy for Osteosarcomas, Chondrogenic Tumors and Soft Tissue Sarcomas

Eugen B. Hug Center for Proton Radiation Therapy Paul Scherrer Institute

Osteogenic Tumors

- •Osteogenic Sarcoma
- •(Ewing Sarcoma)

Chondrogenic Tumors

- Chordomas
- Chondrosarcomas
- Soft Tissue Sarcomas
 - •STS
 - •(Rhabdomyosarcoma)

Is there a place for Proton/Particle Radiotherapy in the treatment of Sarcomas ?

Is there still a need to improve outcome for a subgroup of Sarcoma patients?

Is it desirable to reduce side effects and improve functional outcome?

RT for UNRESECTED Soft Tissue Sarcoma

(Kepka, Delaney et al., MGH, IJROBP, 2005)

- •112 patients with STS
- •RTx between 1970 2001
- Gross disease (unresected or unresectable)

•RT Dose: median 64 Gy (21 % > 70 Gy, max. 87.5 Gy) (included 4/112 pts. with Proton-RT

- •F/U: median 139 months (max. 365 months)
- •Location: 43% extremities, 26% retroperitoneal, 24 % H&N, 7% trunk
- •Tumor size: median 8 cm (max. 30 cm)

Kepka, Delaney et al., MGH, IJROBP, 2005 cont.

CPT

Prognosticators for LC –multivariate analysis:

Size

RT-Dose

AJCC Stage

Kepka, Delaney et al., MGH, IJROBP, 2005 cont.

СРТ

Grade 3-4 Complications: 18/112

	Type of complication	Radiation dose (details on techniques)	
	WHD requiring amputation	76 Gy (1.2 Gy per fraction, b.i.d)	
	WHD coupled with massive tissues necrosis requiring amputation	75 Gy (1.8 Gy per fraction, b.i.d)	
9/18: wound	WHD requiring amputation	64 Gy (2 Gy per fraction)	
healing delay or	WHD requiring major surgery	66 Gy (2 Gy per fraction)	
ekin nocrosis	WHD requiring major surgery	75 Gy (60 Gy with 2 Gy per fraction)	
skin necrosis	WHD requiring major surgery	76 Gy (2 Gy per fraction, b.i.d)	
	WHD requiring major surgery	68 Gy (1.8 Gy per fraction)	
	Skin necrosis and cellulites after minor injury requiring skin graft	70 Gy (2 Gy per fraction)	
	Skin necrosis requiring skin graft	68 Gy (2 Gy per fraction)	
9/18 fibrosis,	Severe neuropathy	66 Gy (2 Gy per fraction)	
bone necrosis,	Severe neuropathy	75 Gy (1.8 Gy per fraction, b.i.d)	
ureteral and	Severe fibrosis, limb strength leaving useless leg	68 Gy (2 Gy per fraction)	
sigmoid	Severe fibrosis, limb strength leaving useless leg	70 Gy (50 Gy at 2 Gy and 20 Gy IORT)	
stonosis SM	Bone necrosis and bone fracture	65 Gy (2 Gy per fraction)	
Stenosis, Sivi	Ureteral stenosis requiring surgery	68.5 Gy (2 Gy per fraction)	
	Ureteral stenosis requiring surgery	56 Gy (2 Gy per fraction)	
		68.5 Gy (2 Gy per fraction)	
	Sigmoid stenosis requiring surgery	68.5 Gy (2 Gy per fraction)	

8% < 68 Gy dose ≥ 26 %

Mundt, Weichselbaum et al., U Chicago, LIROBP 1995	Dose Range (Gy)	Mild- Moderate	Severe	All
RT for extremity	< 63	4/20 (20.0%)	0/20 (0%)	4/20 (20.0%)
	≥ 63	10/39 (25.6%)	9/39 (23.1%)	19/39 (48.7%)
	< 60	2/2	0/2	2/2
	60-62.9	2/16 (12.5%)	0/16 (0%)	2/16 (12.5%)
	63-65.9	4/22 (18.2%)	5/22 (22.7%)	9/22 (40.9%)
	≥ 66	5/17 (29.4%)	5/17 (29.4%)	10/17 (58.8%)

Livi et al, U Floren	ice,
Am J Surg 2006	

S + postop RT for extremity sarcomas

23 / 2	13 pts.	With	Severe	Late	Complications
--------	---------	------	--------	------	---------------

	> 66 Gy	< 66 Gy
Bone fracture	7	0
Fibrosis	5	0
Per. Neuropathy	3	0
Wound complic.	5	3

Opportunity for Protons:

•Tumor subgroups with unsatisfactory local control:

•Tumor size

Anatomic site

Status of tumor resection

Reduction of Adverse Events

Improvement of functional outcome

Local control translates into survival

Histologies

Osteogenic Tumors

- Chondrogenic Tumors
- Soft Tissue Sarcomas

 Indications and Sites presently treated with Protons

Published Data

 Indications and Sites presently treated with Protons

•Skull Base

Paraspinal / Neck /Trunk / Pelvis

•(Extremities)

Published Data

- Retrospective review
- Prospective data gathering
- Phase I-II studies

•(obviously) no Level I evidence (Phase III randomized trial)

There is a paucity of protonliterature specifically on Osteosarcoma and Soft Tissue Sarcomas

Essentially one has to anticipate Osteo- and STS outcomes data from extrapolating data from Chordomas and Chondrosarcomas

Histologies

Osteogenic Tumors

- Osteogenic Sarcoma
- •(Ewing Sarcoma)

Chondrogenic Tumors

- Chordomas
- Chondrosarcomas
- Soft Tissue Sarcomas
 - •STS
 - Rhabdomyosarcoma

MGH update: "Radiotherapy for Local Control of Osteosarcoma"

Delaney, Park et al., IJROBP 61(2), 2005

- Retrospective reivew of 41 patients
- •RT 1980 2002
- Location: H&Skull Base 17 pts., extremity 8, spine 8, pelvis
 7, trunk 1
- •Chemo-Tx: 85%

•23 patients (56%) combined photons/protons (H&Skull Base, Spine)

•66% primary, 24% recurrent, 10% metastatic disease

•Dose: 10 – 80 Gy (median 66 Gy),

0.50

0.25

0.00

Û

Axial (n= 16)

25

Extremity (n=8)

Head/Neck (n = T)

50

Delaney, Park et al., IJROBP 61(2), 2005

75

225

Б0

 $\mathbf{F}5$

100

Follow-Up Time (Months)

Local control: 68 % at 5-years

Local control:

Axial versus Extremity versus H&N location

P= n. s.

Delaney, Park et al., IJROBP 61(2), 2005

Local control:

Total and subtotal resection: 78% versus Biopsy only: 40%

Fig. 2. Actuarial local tumor control according to extent of resection. Patients undergoing gross total and subtotal resection had improved local control compared with patients undergoing biopsy only (p < 0.01).

Dose-response?

LC: 54 % <55 Gy ≥ 71% (P= n.s.)

NO subgroup analysis protons/photons versus photons

Initial MGH / HCL report, 1995, IJROBP 31(3)

LOCALLY CHALLENGING OSTEO- AND CHONDROGENIC TUMORS OF THE AXIAL SKELETON: RESULTS OF COMBINED PROTON AND PHOTON RADIATION THERAPY USING THREE-DIMENSIONAL TREATMENT PLANNING

EUGEN B. HUG, M.D., MARKUS M. FITZEK, M.D., NORBERT J. LIEBSCH, M.D. AND JOHN E. MUNZENRIDER, M.D.

•47 patients

•1980-1992 tx with combined photons/protons

•3 groups: Chordomas/Chondrosarc. (20 pts.), Osteogenic Sarc. (15 pts.), GCT, Osteo-and chondroblastomas (12 pts.)

•Dose: mean 73.9 Gy (Gr.I), 69.8 Gy (Gr.II), 61.8 Gy (Gr. III) (55.3 – 82 Gy (RBE))

•F/U: mean: 3.2 years, min. 1/2 year, max. 11.3 yrs.)

	Anatomic site							Total targe	t dose*	
Histology	No.	Ba	ase of kull C-	spine	T-spine	L-spin	e Sac	rum	Range (CGE)	Mean (CGE)
Group 1 Chordoma	(20) 14		†	+	1	5		8	67.1-82.0	74.6
Chondrosarcoma Group 2 Osteogenic	(15) 15		7	3	4	2		3	61.1~80.0	69.8
Sarcoma Group 3 Giant cell	(12)									
tumor Osteoblastoma Chondroblastoma	8 2 2		2 1 2	3				3	54.0-70.0 63.9, 70.2 66.6, 70.2	61.8
					Local Fai	lure				
			1	RT-mode*		Ex	tent of rese	ction		
Histology	No.	Total	Pre/-Postop	Postop	$\mathbf{B} \mathbf{x} \text{ only}^\dagger$	Total	Subtotal	Bx only	metastasis	Died of disease
Group 1 Chordoma Chondrosarcoma	(20) 14 6	5 0	4/10	1/2 0/4	0/2 0/2	1/4 0/4	4/8 0/2	0/2	2	1
Group 2 Osteogenic Sarcoma	(15) 15	4	0/4	2/8	2/3	0/3	2/9	2/3	4	4
Giant cell fumor	(12)	1	1/1	0/5	0/2	0/3	1/2	0/3	1	0
Chondroblastoma	2	0	-	0/2		0/1	0/2		0	1

15 patients with osteogenic sarcoma of the axial skeleton LC and OS after combined photon/proton RT

Bone and Soft Tissue Sarcoma (Phase II: 9901)

Fixed dose: 70.4 or 73.6 GyE/16fr/6wks

Osteosarcoma of the Pelvic Bone

СРТ

before carbon ion RT

after carbon ion RT

Phase I/II Studie, Chiba, Japan

Histologies

 Osteogenic Tumors Osteogenic Sarcoma •(Ewing Sarcoma) Chondrogenic Tumors Chordomas Chondrosarcomas Soft Tissue Sarcomas •STS Rhabdomyosarcoma

Proton-Radiotherapy for Chordomas and Chondrosarcomas:

- Practiced since 1973
- Published data: MGH, LBL; Loma Linda, PSI, Orsay
- Skull base and paraspinal location
- approx. 2500 patients treated with protons thus far

Proton Radiation Therapy for Skull Base Chordomas and Chondrosarcomas:

Published Results:

- Massachusetts General Hospital
- •Loma Linda Univ. Med Center
- Paul Scherrer Institute
- •Centre de Protontherapie d'Orsay

Chordomas & chondrosarcoma: Population through 9/98

- 622 patients treated through 9/98
 - Chordomas (60%)
 - Mean age 39 (1.8 80 years)
 - Males 323 (52%)
 - Females 299 (48%)
 - Dose 66 83 CGE (CGE = p + Gy X 1.1)

PAUL SCHERRER INSTITU

- Median follow-up 41 months

.....

World wide largest experience: Mass. General Hospital (since 1974)

Chordomas: Local Control- Skull Base (Histology)

enordonida. Ex		nstoregy)	11/99
Local recu	urrence-free survi	val (skull ba	ise)
• <u>Histolo</u>	gу		
	Chondrosarcoma	Chordoma	р
5 years	98 %	73 %	<.0001
10 years	95 %	54 %	<.0001

Chondrosarcoma vs. Chordoma; PRT- Results

CPT

Proton RadiationTherapy (PRT)

for Chondrosarcomas and Chordomas of the Skull Base.

Hug, Laredo, Slater, Devries et al. J Neurosurg. 91:432-439, 1999

Tumor size at PRT and Local Control

CH_EH/dV99

Chondrosarcoma vs. Chordoma; PRT- Results

Proton RadiationTherapy (PRT) for Chondrosarcomas and Chordomas of the Skull Base. *Hug, Laredo, Slater, Devries et al. J Neurosurg. 91:432-439, 1999*

Proton-Radiotherapy for CHORDOMAS of the Skull Base and Axial Skeleton

Prognostic factors:

+++	Tumor Size
(++)	Skull Base versus Spine
+	Primary versus recurrent disease
(+)	Chondroid versus Non-Chondroid Pathology
++	Gender
(+)	Age
(+)	Pediatric versus Adult
+++	Ability versus Inability to deliver dose: Optimal/suboptimal Dose Distribution by involvement or abutment of critical structures
+++	Radiation Dose

Skull Base Chordomas and Chondrosarcomas at PSI: 5-year outcome* of spot scanning based PT

To be presented by Dr. Ares

•Mean follow-up time:> 3 years•Local Control for Chordomas:> 75%•Local control for Chondrosarcomas:> 90 %•High Grade Toxicity:< 7%</td>

* Ares, Lomax, Hug, Goitein – in preparation

Chordomas of the Base of Skull

Chordomas and Chondrosarcomas of the Base of Skull

Neoplasms of the Skull Base:

The present state of Tx for Chordomas and Chondrosarcomas

•The majority of **Chondrosarcomas** of the skull base are of low grade histology.

•Long-term outcome data suggest possible CURE for the majority of patients following subtotal surgical resection and high-dose radiation therapy (protons) to approx. 70 – 75 Gy.

 Gross total resection should not be pursued if increased surgical risks (the "last 5 % = 90% risk")

•This represents a dramatic improvement of prognosis in a disease considered universally fatal 20 years ago

RT for Skull Base Chordomas

GOAL:

Develop a risk-classification

low - intermediate - high

to correlate with recommendations for adjuvant Tx, i.e. treatment algorithm:,,

observation - aggressive Tx - palliative Tx

Long-term Side Effects of Skull Base Irradiation

The risks of severe side effects following high dose, precision RT depend on several variables:

Tumor size, tumor compression of normal brain, critical structure involvement, dose to normal tissues, number of prior surgeries, general medical risk factors (diabetes, HTN, smoking,), KPS

Low-risk group: < 5% High-risk group: > 10 % - ?? *

* RT as last modality after multiple failures

Optic neuropathy and temporal lobe toxicity

1.5 yrs.

2.0 yrs

Dose limitations for OAR at PSI

OAR	Dmax
Brainstem surface	64 CGE
Brainstem center	53 CGE
Optic Chiasm	60 CGE
Optic Nerves	60 CGE

Extracranial Chordomas of the Axial Skeleton treated with spot scanning Proton Therapy at PSI:

Hans Peter Rutz et al.

Extracranial chordomas of the Axial Skeleton treated with spot scanning Proton Therapy at PSI:

(Rutz et al.)

• Update of the initial publication (*Rutz HP et al. IJROBP* 67(2):512; 2007). Updated manuscript in progress.

•N = 40

•Tx: 1999 – 2005

•Location:

Chordomas of the Axial Skeleton at PSI:

Surgical Stabilization - Reconstruction (plates, screws, cage, rods etc.) in 21 / 40 patients.

•19 / 40 patients without inserted instrumentation

•IMPT part of treatment plan since 2004

•Median total dose: 72 Gy (RBE) (range: 59.4 – 75.2 Gy (RBE))

•Follow-up period:

•Minimum: •Median: •Maximum: 2 years (24 months) 43 months 91 months

Chordomas of the Axial Skeleton at PSI: 5-year outcomes data

Local control

13 / 40 patients with local failure

CPT

Impact of Surgical Stabilization – Reconstruction (SS-R) on Local control

Extracranial chordoma

CT artifacts for surgical implants for stabilization / fusion on spinal axis tumors

Clinical factors:

- Negative selection of patients with more advanced tumor – i.e. larger and more complex tumor presentation requiring more extensive surgery?
- Treatment planning issues:
- (Difficulties defining Targets?)
- Difficulties in dose calculation?
- Difficulties in range calculations?

Similar experience for passive scattering technique?

Proton RT for Sacral Chordomas: MGH results

Park et al., MGH, IJROBP 65(5), 2006

•27 patients, treated 1982 – 2002
•photons and/or protons
•16 primary chordomas, 11 recurrent
•Combined S + RT = 21 patients

•Mean dose 71 Gy(E) for primary
•Mean dose 77 Gy (E) for recurrent chordoma

•RT alone: 6 patients

•60, 62, Gy photons and 73-77 Gy photons/protons

Park et al., MGH, IJROBP 65(5), 2006

Local Control following S + RT (21 pts.): Primary >>> Recurrent

Description	Time	Local control %	Disease free survival %	Overall survival %
14 primary chordomas treated by surgery & radiation	5 years	90.9 ± 8.7	90.9 ± 8.7	92.9 ± 6.9
	10 years	90.9 ± 8.7	90.9 ± 8.7	92.9 ± 6.9
7 recurrent chordomas treated	5 years	57.1 ± 18.7	42.9 ± 18.7	66.7 ± 19.3
by surgery & radiation	10 years	19.1 ± 16.8	14.3 ± 13.2	44.4 ± 22.2

Local Control following RT alone (6 pts.):

Photons only:

- •60 Gy LFailure
- •62 Gy LFailure

Mixed photons / protons:

•77, 74, 77 Gy (E) Local control •73 Gy (E) LFailure

Fig 6A-B. — Axial (A) and sagittal (B) dose displays for a high-dose combined photon (30.6 Gy)/proton (46.8 GGE) irradiation plan delivering 77.4 GGE in 43 fractions via shrinking field technique for a patient who declined surgery for a chordoma involving the 83 vertebral body. Note the rapid failoff of dose away from the tumor farget. The patient is currently free of progressive tumor or treatment complications 4 years after the end of treatment.

Histologies

Osteogenic Tumors

- •Osteogenic Sarcoma
- Ewing Sarcoma

Chondrogenic Tumors

- Chordomas
- Chondrosarcomas
- •Soft Tissue Sarcomas •STS •Rhabdomyosarcoma

Proton – Photon planning comparison

for Soft Tissue Sarcomas

Planning Comparison for STS:: *Photon IMRT* versus *Proton IMPT*

Weber, Delaney et al., PSI + MGH, IJROBP 2004

Patient no.	Histology	Localization	Stage (UICC/AJCC)	Grade	CTV volume (cc)
1	Angiosarcoma	L1	IIB	3	41.4
2	Angiosarcoma	L1	IA	2	214.6
3	Leiomyosarcoma	T11 - 12	IA	1	520.1
4	Epitheloid sarcoma	T5-7	Ш	3	181.3
5	Chondrosarcoma	T57	Recurrent	1	360.5

Step 1: Planning assumptions: 77.4 Gy (RBE) to CTV with identical OAR constraints. Calculate target covergae and DVH's for normal tissues

Step 2: Attempt dose escalation with protons leaving OAR constraints unchanged

Weber, Delaney et al., PSI + MGH, IJROBP 2004 cont.

	OAR	IMRT: IMPT			
Integral Normal		D_{Max}	D_{Mean}	$D_{50\%}$	$D_{10\%}$
	Spinal cord	1.0	1.4	1.7	1.1
rissue dose	Heart	6.0	24.7	30.8	35.3
consistently	Lung	1.1	6.5	32.7	11.3
reduced by IMPT	Kidney	1.0	2.1	6.4	1.3
(factor 1.3 – 25)	Stomach	2.6	6.9	40.0	7.4
	Liver	1.0	1.3	1.1	1.0
	Small bowel	*	*	*	*

Inhomogeneity coefficients and Conformity Indices were not significantly different

CPT

The optimization IMPT algorithm was used to increase the total dose to the target by 10% and 20%, within the maximal OAR dose constraints.

Dose escalation could be achieved in all patients, at the 20% (92.9 CGE) dose escalation level, regardless of tumor size, location, and geometry.

The Integral Dose Differential

Comparative dose distributions for 9-field photon intensitymodulated photon (IMXT) and 3-field intensity-modulated protonradiation (IMPT) treatment plans for a patient with pelvic Ewing's sarcoma.

(Courtesy of A.R. Smith and A.J. Lomax, in Delaney, Cancer Control, 2005)

Proton Therapy for Adult Patients with STS: the PSI experience

(Weber et al., IJROBP 2007)

•13 patients with STS

•1998-2005 tx with protons (6) or mixed protons/photons (7)

•Gross tumor: 9 / 13. R1 resection: 4 / 13

•Location: H&N, Skull Base, Paraspinal. Pelvis, Trunk, Reroperitoneal (2 pts), Shoulder (2pts.)

•Primary: 9 (69%), recurrent: 4 pts.

•Dose: median 69.4 Gy (RBE) (50.4 – 76 Gy (RBE))

•F/U: minimum 1 year, 12 pts. > 2 years, median for surviving patients: 48 months.

<u>Tumor histology</u>: liposarcoma (n = 3), peripheral nerve sheet tumor (PNST, n = 3), leiomyosarcoma (n = 2), desmoid tumors (n = 2), angiosarcoma (n = 1), spindle cell sarcoma (n = 1), and malignant hemoangioperiocytoma (n = 1)

Treatment plan for (A) retroperitoneal, (B) head and neck, and (C) paravertebral sarcoma. Sparing of the kidney (A), spinal cord (A, C), and brainstem (B).

Proton – Radiotherapy

for STS in Children

Proton Radiotherapy for pediatric STS treated at PSI

(Timmermann et al., PSI, IJROBP, 2007)

•16 children with STS (including 12 with RMS or RMSlike histology)

- •14/16 children with chemotherapy
- •Age: median 3.7 years (1.4-14.1 years). 9 children requiring anesthesia
- •Tumor volume: 52 cc 1225 cc
- Location: H&N, Skull Base, Paraspinal, Pelvis

•Proton RT Dose: median 50 Gy (RBE) (46 – 61.2 Gy (RBE) – doses according to CWS2002, MMT-95, COG-D9803 in 14 pts.

•F/U: median 18.6 months (4.3 -71 months)

Timmermann et al., PSI, IJROBP 2007 cont.

Outcome (very preliminary)

Late toxicity: F/U too short

Local control: 12/16 = 75% at 2 years

2/12 Failures in RMS- Group

2/4 in Non-RMS Group (after 50.4, 50 GY(RBE))

Overall Survival

Advantage: Proton-RT emdedded in multi-institutional concepts. Matched-case comparability of outcomes data with photons

<u>Disadvantage</u>: no increase in tumor control probability from protons by applying Tx-prescriptions similar to photons

2 principal Concepts for applying Proton RT in relation to Photon-RT Pediatric Clinical Trials

Concept 2

High risk STS (mainly Non-RMS STS with gross residual)

Apply high doses based on peds. skull base chordoma data

High dose proton-RT: 68 -76 Gy(RBE)

Enrollement in photon trials only if high doses permissible

Low risk STS (mainly RMS STS)

Enrollement in photon trial

Example: COG / IRS RMS dose and volume regimen

Normal tissue sparing advantage, but no expectation for increased tumor control

Example Concept 2:

Proton Radiation Therapy in the management of pediatric base of skull tumors (Hug et al., MGH+LLUMC, IJROBP, 2002)

- •29 children with mesenchymal tumors
- •1992-1999 tx with protons or mixed protons/photons
- •Age: median 12 years (1-19 years).
- •Gross tumor: 28/29 patients (97%)
- •Tumor histology grouped in "malignant" versus "benign"
- •Dose for malignant histologies according to adult experience
- •F/U: mean 40 months (13 -92 months)

Hug et al., MGH + LLUMC, IJROBP 2002 cont.

	No. of Patients
TOTAL	29
Malignant Histology	20
Chordoma	10
Chondrosarcoma	3
Epithelioid Sarcoma	1
Malignant Fibrous Histiocytoma	1
Myxoid Sarcoma	1
Rhabdomyosarcoma	4

Median dose: 70 CGE (45 – 78.6)

Benign Histology	9
Giant Cell Tumor	6
Angiofibroma	2
Chondroblastoma	1

Median dose: 60.4 CGE (45 – 71.8)

Example: 13 y.o. M with Malignant Fibrous Histiocytoma

Severe late effects: 2 pts. (motor weakness, sensory deficit)

Proton/Particle -Radiotherapy for Sarcomas:

There is a need for improving local controle by RT for high-risk, unresected/resectable sarcomas

Potential and Future

Increasing Local Control by dose escalation:
Residual disease or unresectable disease
Disease at high risk for failure

Decreasing Late Adverse Events by reduction of Integral dose:

 Improving functional outcome by reducing normal tissue dose

Reducing risks of Secondary malignancy

Proton Radiotherapy for STS: possible trial designs

Scenario 1: "Proton- versus Photon -Radiotherapy for STS". A Phase III Trial using moderately high dose levels

Scenario 2: " High dose RT for high-risk STS using stereotactic precision-modality radiotherapy". A Phase II trial open for QAapproved equipment

Scenario 3: "Dose-escalation study using proton radiotherapy for unresectable STS"

Proton Radiotherapy for STS: possible trial designs

Scenario 1: "Proton- versus EB-Photon Radiotherapy forSarcoma". A Phase III Trial using moderately high dose levels

Scenario 2: "High dose RT for high risk Sarcoma using stereotactic precisionmodality radiotherapy". A Phase II trial open for QA-approved equipment

Scenario 3: "Dose-escalation study using proton radiotherapy for unresectable ...S"

THANK YOU