PTCOG 47 Jacksonville, May 22, 2008

Biology Hypofractionated Radiotherapy

H. Tsujii Research Center for Charged Particle Therapy National Institute of Radiological Sciences(NIRS)

Hypofractionated Radiotherapy

Very high radiation doses can be given to patients with tumors of the parallel organs using hypofrationated radiotherapy with SBRT as well as charged particles without serious acute or longterm normal tissue morbidity.

Both lung and liver tumors have been successfully treated in this manner. Many other types of tumors like prostate cancer are also being challenged in Cion RT using small number of fractions.

Hypofractionated Radiotherapy

In the case of charged particles, indications for hypofractionated radiotherapy can be also extended to many types of tumors, particularly in C-ion RT.

There are ample knowledge and experiences we can learn from high-tech photon therapy such as 3D-CRT, SRT and IMRT. Factors to be considered for Hypofractionated Radiotherpy

- Effect of proliferation
- Effect of reoxygenation
- Effect of volume
- Dose homogeneity and minimum dose
- Duration of single fraction delivery
- Tolerance dose of target organ: Parallel vs Serial organ
- High-LET effects
- Release of cytokines after high dose irrad

Three-dimensional representation of a typical beam arrangement for stereotactic body Radiation therary to a left-sided, early-stage lung cancer. **A:** The beams looking From a View directly in front of the patient. **B:** A view from the patient's feet. Contoured normal Structures are shown as well as the tumor's planning target volume(red).

Papiez L, Moskvin V, Timmerman RD: **SBRT**, ed Kavanagh B, Timmerman R. Lippincott 2005

Comparison of BED (a/B=10) of representative dose regimens used in SBRT vs. conventional RT for early-stage NSCLC.

Author	Dose	Biologic Equivalent Dose		
Standard radiotherapy	2 Gy $ imes$ 30–33 fx	72–79 Gy		
Hara (58)	30 Gy $ imes$ 1 fx	120 Gy		
Nagata (50)	12 Gy $ imes$ 4 fx	105 Gy		
Timmerman (51)	20 Gy $ imes$ 3 fx	180 Gy		

Normal Tissue Dose Tolerance for SBRT delivered in 3 Fractions

Organ	Volume	Dose (Gy)
Spinal cord	Any point	18 Gy (6 Gy per fraction)
Esophagus	Any point	27 Gy (9 Gy per fraction)
lpsilateral brachial plexus	Any point	24 Gy (8 Gy per fraction)
Heart	Any point	30 Gy (10 Gy per fraction)
Trachea and Ipsilateral bronchus	Any point	30 Gy (10 Gy per fraction)
Whole lung (right and left)	Tolerance do	se depends on PTV

Assumption in NSCLC

The total duration of SBRT is shorter than the starting time (T_k) of accelerated repopulation in tumors, believed to be 3 to 5 weeks in tumors with the same rate of repopulation.

For analysis, a T_k of 28 days was assumed with a repopulation doubling time (T_p) of 3 days.

It can be also assumed that no tumor cell repopulation occurs in the hypofractionated RT.

Martel MK, et al : Lung Cancer 1999; 24: 31-37 (Unv.Michigan)

Martel MK, et al : Lung Cancer 1999; 24: 31-37 (Unv.Michigan) Dose was escalated to 103 Gy in 2-Gy fr given at 5 fr per wk.

Modeling Results from SBRT - Effect of Proliferation -

It can be assumed that no tumor cell repopulation occurs in the hypofractionated RT

Martel MK, et al: Lung Cancer 1999; 24: 31-37

Repopulation during a course of RT

RTOG Study (1993) Cox JD et al: IJROBP 1993;27, 493-498 397 pats treated with 69Gy of multifractionated RT 3-yr Survival 17% without delay of treatment 1% with gaps exceeding 5 days (p=0.0001)

Effect of Reoxygenation

If radioresistant hypoxic cells were present in the tumors, or cells in a resistant phase of the cell cycles, the dose required would be 2.5 to 3 times greater than they were not.

If reoxygenation is incomplete so that only 1% of the tumor cells remain hypoxic, then many orders of magnitude (7 or 8) of resistant cells remain.

Therefore, total doses 2 to 3 times greater than 60 or 70 Gy would be required to obtain a finite chance of eliminating malignant cells from the target.

Why do we need high doses to sterilize tumors?

FIGURE 1.3. Schematic diagram of cell survival curves for well-oxygenated cells (*full line with filled circles*), with a line of less slope representing 20% hypoxic cells remaining hypoxic throughout radiotherapy with 2-Gy fractions. The oxygen enhancement ratio is assumed to be 3. To reduce the proportion of surviving cells to 10⁻¹¹ would require three fractions of more than 24 Gy. Fowler JF, Tome WA, and *Welsh JS: SBRT,

ed Kavanagh B, Timmerman R. Lippincott 2005

Dose inhomogeneity and intrafraction radiation repair

In IMRT, an apparently small-volume tail but of surprisingly low dose can appear on the DVH, unless a minimum tumor dose is specified. This problem can be avoided if the effective uniform dose (EUD) is calculated from the DVH of the target, and is not allowed to be less than the prescribed dose.

Volume Effect : Cold Spots in the Isodose Distribution

FIGURE 1.4. The decrease in TCP (tumor control probability), plotted against percent reduction in dose in each subvolume. Each curve is for a different tumor subvolume. It is assumed that a homogeneous treatment of 30×2 Gy = 60 Gy would yield TCP = 50%.

Towe WA, Fowler JF,: 2002

A fall of 25% in tumor dose delivered to a 20% subvolume of tumor lead to unacceptably low TCPs of 10%.

FIGURE 1.5. The same data as in Fig. 1.4 but plotted against percentage of tumor volume, each curve being for a different dose reduction. A 30% dose reduction in a 10% volume (*lowest curve*) gives a much lower tumor control probability (TCP) (8%) than a 10% dose reduction (*second curve down*) in 30% of the tu-

Towe WA, Fowler JF,: 2002

Estimated loss of biologic efficiency (BED) with prolonged fraction delivery 1 h 1 h 응 100 100 b a for ($\alpha/\beta=3Gy$) 90 .90 2 Gy 2 Gy % 80 80 5 Gy Integrated BED 10 Gy 5 Gy 15 Gy 70 70 23 Gy 10 Gy Half times of repair 15 Gy Half-times of repair 50% of 0.2h + 4h 23 Gy 50% of 0.4h + 4h 60 60 2 0 Duration of single fraction (Hours)

Radiation damage repair is not monophasic but consists of at least two components with different half time.

Duration of Rx delivery should be recorded.

FIGURE 1.6. Estimated losses of biologically effective dose (BED) (for late effects, $\alpha\beta = 3$ Gy) as a function of prolonged delivery times for fraction sizes of 2 to 23 Gy. Two monoexponential repair rates are assumed (30), with two equally weighted half-times of 0.4 hour +4.0 hours (A) and 0.2 hours +4.0 hours (B). The effect of faction size is illustrated. The longer half-life has a small effect up to 1 hour's duration. The loss of BED is ap-

Fowler JF, :2005

Normal tissue considerations

An ablation with enormous increases in dose may be feasible if the organ is a good approximation to a "parallel organ" so that the loss of such small volume of functioning tissue is tolerated, and if it contains no particularly sensitive structures. \rightarrow Lung, Liver, etc

Volume effect and Hypoxia

Diameter Of Sphere	Volume (cm³)	Dose that can be given
5cm φ	66	1.0
4cm	34	2.0
3cm	9.5	5.0 - 7.0

Theoretically, the use of a single fraction is probably the <u>worst</u> radiobiologic alternative, because it gives no chance of reoxygenation or any shift out of a resistant phase of cell cycles or nutritional deprivation. It would be expected to require a considerably larger total dose to be effective on tumors than even a small number of dose fractions.

Characteristics of Ion Beams 1. Advanced dose distribution (Protons, C-ions) 2. Greater RBE and Iower OER (C-ions)

Hypofractionated Particle Beam Therapy

One of the most successful RT is the hypofractionated proton therapy for ocular melanoma.

Biological Background for Hypo-fractionated radiotherapy with Carbon lon beams

Koike S, et al: Radiat Prot Dos. 2002;99: 405-408. Ando et al. : J.Radiat.Res.,46:51-57, 2005. Denekamp J: Int J Radiat Biol. 71: 681-694, 1997.

- Experiments with <u>carbon ions and fast neutrons</u> demonstrated that increasing their fraction dose tended to lower the RBE for both the tumor and normal tissues, but the RBE for the tumor did not decrease as rapidly as the RBE for the normal tissues.
- These results substantiate that the <u>therapeutic ratio increases</u> rather than decreases even though the fraction dose is increased.
- The experiments have also provided the biological evidence for the validity of a short-course hypo-fractionated regimen in carbon ion RT.

RBE vs. Fraction Size in Carbon Beam Irradiation

Hypofractionated Radiotherapy has been performed in Carbon Ion RT

Optimal dose-fractionations determined in dose escalation studies for carbon ion radiotherapy at NIRS

Tumor Sites		Dose-Fractionation (GyE/fr/week)	Gy /fr	BED (α/β=10)	BED (α/β=2.5)
Skull Base	e	60.8 / 16 / 4	3.8	83.9	153.2
H & N:	ACC,MM etc Sarcoma	57.6 / 16 / 4 64.0 / 16 / 4 70.4 / 16 / 4	3.6 4.0 4.4	78.3 89.6 101.4	140.5 166.4 194.3
NSCLC: (Stage I)	Peripheral type Hilar type	90.0 / 18 / 5 72.0 / 9 / 3 52.8 / 4 / 1 (T1) 60.0 / 4 / 1 (T2) 40.0 or 44.0 / 1 / 1day 68.4 / 12 / 3	5.0 8.0 13.2 15.0 40.0 or 44.0 5.7	135.0 129.6 122.5 150.0 - 107.4	270.0 302.4 <mark>331.6</mark> 420.0 - 224.4
Liver:	HCC	79.5 / 15 / 5 69.6 / 12 / 3 58.0 / 8 / 2 52.8 / 4 / 2 38.8 / 2 / 2 days	5.3 5.8 7.2 13.2 19.4	121.6 110.0 100.1 122.5 114.1	248.0 231.1 226.2 331.6 339.9
Prostate		66.0 / 20 / 5 63.0 / 20 / 5 57.6 / 16 / 4	3.3 3.2 3.6	87.8 82.8 78.3	153.1 142.4 140.5
Bone / Soft tissue		70.4 / 16 / 4 (Pelvis) 64.0 / 16 / 4 (paraspinal	4.4) 4.0	101.4 89.6	<mark>194.3</mark> 166.4
Rectum (P	Post-ope recurrence)	73.6 / 16 / 4	4.6	107.5	209.0
Uterine Ce	ervix (Adenocarcinoma)	74.4 / 20 / 5	3.7	102.1	185.1

Local control and morbidity of carbon ion RT in hepatocellular carcinoma.

		Local	Control		Мо	rbid	ity (3~12 m	o)
Fractionatio	n		3-yr		Grade (CTC modified)				
TD	/ Fx / Wk	No.	LC	No.	0	1	2	3	4
49.5~79.5/1	5fx /5wk	24	81%	20	10	4	5	1(5%)	0
54.0~69.6/1	2fx /3wk	34	86%	24	16	2	6	0(0%)	0
48.0~58.0/	8fx /2wk	24	86%	16	10	5	0	1(6%)	0
48.0~52.8/	4fx /1wk	75	90%	54	40	6	6	2(4%)	0
32.0~38.8 /	2fx /2day	36	90%	13	9	2	2	0(0%)	0
Total		181	-	127	85	19	19	4(3%)*	0

* All recovered to pre-treatment function.

$S8/5, 7.7 \times 7.0$ cm

38.8GyE/2fr

DVH of the Liver for Early Change of GOT in C-ion RT of HCC

Clinical Study on Carbon Beam Therapy for Stage I Non-Small Cell Lung Cancer

Local Control by Size and Histology 4 and 9 fractions

Survival in Stage I Lung Ca 4 and 9 fractions

Local Control vs. Carbon Ion Dose for Different Fractionations in NSCLC

71y/o F (Sq Cell Ca, cT2N0M0)

Single fraction (40.0GyE)

After 18 mo,

Local Control in Single Fraction (Baba, 2008)

N=152

Total Dose	T1 (≤	3cm)	T2 (>3cm)		
GyE	12 mo.	2 mo. 24 mo.		24 mo.	
28.0 (n=6)	100.0	100.0	50.0	25.0	
32.0 (n=27)	69.2	69.2	75.0	88.8	
34.0 (n=34)	93.8	81.8	64.7	57.1	
36.0 (n=18)	100.0	100.0	85.7	85.7	
38.0 (n=14)	90.0	90.0	100.0	100.0	
40.0 (n=15)	100.0	100.0	66.7	66.7	
42.0 (n=15)	90.0	-	75.0	-	
44.0 (n=23)	85.7	-	100.0	-	

Tumor Control Probability in Stage I NSCLC

Hypofrationated RT for Prostate Ca

 Recent reports of a low d/ß ratio for prostate cancer lead to the background that prostate cancer can be safely and effectively treated with a very short course of external beam RT

(Fowler; 2001, Brenner; 1999, Buchesne; 1999)

 A shortened course of radiotherapy is very attractive option for men who might not be candidates for brachytherapy or who find a 7week to 8-week course of daily treatment prohibitive because of logistics or cost.

Clinical Trials in Prostate Canceer at NIRS

Total enrolled: 663 pts. Period:95.Jun. ~ 07.Aug. 562 treated with 20fr / 5wks, 97 treated with 16f / 4wks

Protocol	Period	Dose Fractionation	No.pts
Dose Escalation	95.6~00.2	54~72GyE / 20fr/ 5wks	96
Phase II	00.4~07.8	63 or 66GyE / 20fr / 5wks	466
Current Fract.	03.12~07.8	57.6GyE / 16fr / 4 wks	97
Total	95.6~07.8		659

Carbon Ion Therapy of Prostate Ca 3 fields 5 fields 66Gy/16fr/5wks (3.3GyEx16)

DVHs of the Rectum in Carbon Ion Therapy for Prostate ca

DVHs of the Rectum in Carbon Ion Therapy for Prostate ca

9402 (n=35)

Average DVHs of the Rectum (according to Late Rectal Morbidity at 1st phase I/II study)

Comparison of Late Toxicities

		N	lo. of	Morbidit	y ≥ G2	
Institutes	RTx	Dose/fr.	pts.	Rectum	GU	
Maximum Reaction						
MDAnderson CC	. ¹⁾ 3DCRT	78Gy/ <mark>39f</mark>	151	26.0%	13.0%	
Cleveland CF. ²⁾	IMRT	70Gy/ <mark>28f</mark>	770	4.4%	5.2%	
Loma Linda U. ³⁾	Proton	75CGE/40f	901	3.5%	5.4%	
NIRS ⁵⁾	Carbon	63-66GyE/ <mark>20f</mark>	288	1.8%	5.9%	
At Last Follow-up						
Fox Chase CC. ⁴⁾	3DCRT	≥76Gy/ <mark>38f</mark>	232	11.0%	7.0%	
NIRS ⁵⁾	Carbon	63-66GyE/ <mark>20f</mark>	288	0.9%	2.4%	

1) DA Kuban et al.IJROBP 70; 2008

••

- 2) PA Kupelian et al. IJROBP 68; 2007
- 3) RW Schulte et al. Strahlenther Oncol 176; 2000
- 4) GE Hanks et al. IJROBP 46; 2000
- 5) H.Tsuji, et al. IJROBP 63; 2005

Survivals

Comparison with other RTx (5-year bNED, iPSA>20)

			No. of5	-yr Biochemical		
Institutes	RTx	Dose	pts.	NED (iPSA>20)		
MDAnderson CC. ¹⁾	3DCRT	78Gy/ <mark>39f</mark>	53	39%(8y-rate)		
	(PSA>10)					
Fox Chase CC. ²⁾	3DCRT	≥76Gy/ <mark>38f</mark>	232	26-63%		
Cleveland CF. ³⁾	IMRT	70Gy/ <mark>28f</mark>	770	72%		
Loma Linda U. ⁴⁾	Proton	75CGE/45f	901	45%		
NIRS ⁵⁾	Carbon	66.0GyE/ <mark>20f</mark>	186	80%		
				72%(8y)		

- 1) DA Kuban et al.IJROBP 70; 2008
 - 2) GE Hanks et al. IJROBP 46; 2000
 - 3) PA Kupelian et al. IJROBP 63; 2005
 - 4) JD Slater et al. IJROBP 59; 2004
 - 5) H.Tsuji, et al. IJROBP 63; 2005

Comparison of Survivals

Treatment	Dose	OS* in each Risk Group**								
	(Gy/f)	Gro	oup 2	Gro	up 3	Gro	up 4			
		No.pts	5-y OS	No.pts	5-y OS	No.pts	5-y OS			
RTOG Meta	a analysis#	¥								
RT alone (65-70GyE/3	<mark>5f) 443</mark>	82%	338	68%	324	52%			
RT+ Horm	one	114	76%	138	79%	103	63%			
Carbon										
RT+ Horm (66.0Gyl	one E/ <mark>20f)</mark>	118	95%	125	92%	56	89%			

*Overall Survival Rate **Risk Group: Group 2; GS2-6, T3 or GS7, T1-2 Group 3; GS7, T3 or GS8-10, T1-2 Group 4; GS8-10, T3

#RTOG: Radiation Therapy Oncology Group Mack Roach III et al IJROBP; 47(3): 617-627, 2000

Hypofractionated schedule in C-ion RT for prostate cancer

Stereotactic hypofractionated radiotherapy of the prostate, 33.5Gy in five fractions for localized disease: first clinical trial results (Madsen et al: IJROBP 67; 1099-1105, 2007)

- Phase I/II trial: 40 pats (2000-2004)
 - Low-risk disease; GS<6, PSA<10ng/mL, <T2aNxMx</p>
 - Prostate volume; median 56.4cc (13.7 134.5 cc)
 - Total dose; 33.5 Gy (6.7 Gy x 5 fr)

	Ac	ute	La	ate	
Grade	GU	GI	GU	GI	
0	49%	61%	55%	63%	
1	28%	26%	25%	30%	
2	21%	13%	20%	8%	
<u>></u> 3	0%	0%	0%	0%	

Toxicity (Scoring with RTOG-LENT)

Dose	No.	I	Rectu	m		Bla	dder/u	rethr	'a	
GyE/f.	pts	G0	G1	G2	G3	G0	G1	G2	G3	
 Maximum										
66.0/20f	288	81.3	17.0	1.7	0	35.1	58.3	6.6	0	
63.0/20f	169	91.1	7.1	1.8	0	76.3	23.1	0.6	0	
57.6/16f	87	89.7	10.3	0	0	74.7	25.3	0	0	
 Last F/U										
66.0/20f	288	93.1	6.6	0.3	0	80.9	16.0	3.1	0	
63.0/20f	169	94.7	4.7	0.6	0	94.7	5.3	0	0	
57.6/16f	87	94.3	5.7	0	0	95.4	4.6	0	0	
									· · · · · · · · · · · · · · · · · · ·	

Median follow-up period: 66.0/20f;49.2m, 63.0/20f;15.1m, 57.6/16f;21.4m

A Shorter Fractionation:57.6GyE / 16f

87 patients (out of 97 pts) Average age; 69.5 y.o. (51~80) Follow-up; Median 21.4 months (6~49 m)

Summary

• There is a significant advantage in shortening the overall time and fractions of radiotherapy at least to 3 - 4 weeks or even shorter, which has been done effectively in radiotherapy with C-ion RT.

• This means that the facility can be operated more efficiently, offering treatment for a larger number of patients than is possible with other modalities over the same period of time.