Basics of Light Ion Treatments: Depth Dose and Range

Michael F. Moyers Proton Therapy, Inc.

Objectives

- 1. Describe the underlying physical processes that shape the depth dose curves for different particles.
- 2. Describe various parameters associated with range.
- 3. Provide a survey of the sources of uncertainties in range within the patient and the magnitude of each.

Assumptions

- This presentation assumes the audience is familiar with:
 - » ionization and stopping powers
 - » multiple Coulombic scattering
 - » bremstrahlung
 - » nuclear reactions
- The purpose of the presentation is to give the audience a "feel" for the magnitudes of the effects and how they influence light ion treatments.

Rationale for Light Ion Treatments

- 1. The dose delivered to non-target tissues relative to the dose delivered to target tissues is lower than for other radiation beams due to the depth dose distribution.
- 2. The lateral and distal dose gradients are higher than for other radiation beams enabling better splitting of the target and normal tissues.
- 3. For ions heavier than helium, a differential RBE with depth results in a higher effective dose in target tissues compared to surrounding normal tissues.

Depth Dose Distributions - Non-modulated

[all distributions normalized to maximum dose]

Moyers

PTCOG 2008

Processes that Determine the Shape of the Depth Dose Distribution

Particle	е	H-1	anti - H	He-4	C-12	Fe-56
increasing stopping power	+	+++	+++	+++	+++	+++
with decreasing energy						
increasing obliquity	+++	0	0	0	0	0
fluence buildup						
straggling from stochastic	+	+	+	+	+	+
energy losses						
straggling from multiple	+++	++	++	+	+	+
scattering paths						
straggling from multiple	+	++	++	+++	+++	+++
heterogeneity paths						
bremstrahlung	+	0	ο	Ο	0	ο
nozzle scatter	++	+	+	+	+	+
nuclear	0	+	+	+	+	++
attenuation						
buildup from	++	+	+	+	++	+++
secondary particles						
tail from	0	+	+++	+	++	+++
secondary part icles						

Electronic Stopping Power Versus Energy and Particle

Speed of Particles

		electron			proton			carbon	
Range	energy	speed	S	energy	speed	S	energy	speed	S
[cm]	[MeV/cm]	[v/c]	[MeV/cm]	[MeV/cm]	[v/c]	[MeV/cm]	[MeV/cm]	[v/c]	[MeV/cm]
0.1	0.34	0.80	2.09	8.83	0.14	49.7	196	0.18	1119
0.3	0.74	0.91	1.92	16.3	0.18	30.5	364	0.25	677
1.0	2.04	0.98	1.82	31.8	0.25	17.8	711	0.34	395
3.0	5.90	1.00	1.90	58.6	0.34	10.9	1314	0.44	247
10.0	21.8	1.00	2.05	115.1	0.45	6.56	2621	0.58	154
30.0	88.8	1.00	2.19	216.6	0.58	4.24	5092	0.73	107

Proton Depth Dose Curve -Ionization Loss Only Along Path

Electron Depth Dose Curve -Ionization Loss Only Along Path

Straggling from Stochastic Energy Losses

Straggling from Multiple Particle Paths

MCNPX simulations

Straggling from Multiple Paths Through Heterogeneities

Urie et al. 1983

Electron Depth Dose Curve -Multiple Processes

Depth Number Distribution / Depth Dose Distribution

PTCOG 2008

End of Range / Peak Region Magnified

PTCOG 2008

Range of Protons in Non-modulated Beam Number of Protons Lost

Residual Range for Dosimetric Purposes -Modulated or Non-modulated

Prescribed Range of Modulated Beam

Uncertainties in Measuring Standard Range in Water

•	water tank window parallel plate chamber waterproof lid parallel plate chamber front wall setting of reference depth with spacer	± 0.008 ± 0.036 ± 0.044 ± 0.3	3 mm 3 mm 4 mm mm
•	calibration of water tank scanning mechanism backlash in water tank scanning	± 0.23	mm
•	mechanism rigidity and tilt of ion chamber mount on	± 0.3	mm
	scanning mechanism	± 0.3	mm
-	lotal range uncertainty	± U.3/	mm

Uncertainties in Delivering Correct Energy or Range Each Treatment

- accelerator beam energy
- variable rangeshifters
- scattering foils
- total of ± 0.1 to ± 1.0 mm
 depending upon method
 used by accelerator for
 verification

Uncertainties in Stopping Powers

• range in water

- » ICRU 49 (1993) versus Janni (1982)
 ≈ 4 mm different at 250 MeV (≈1%)
- » several studies have shown the I-value is closer to the 81.77 eV used by Janni than the 75.0 eV used by ICRU 49

• Relative Linear Stopping Power for protons

- » Moyers et al. (1992): tissue substitutes and ancillary equipment calculated/literature versus measured 0.4 - 3.0%
- » Schneider et al. (1996): tissues calculated/literature versus measured 1.6%
- » small energy dependence (ignored in most TPSs) $\leq \pm 1\%$ for z<13 between 30 and 250 MeV

Uncertainties in CT Numbers

cause	uncertainty	mitigation
scanner calibration for standard conditions	± 0.3% day -to-day	patient specific scaling
kVp, filter, and FOV selection	± 2.0% PMMA, PC > ± 2.0% bone	use only calibrated conditions
volume scanned	± 2.5%	patient specific scalin g
position in scan	± 1.5% water > ± 3.0% bone	portal / region specific scaling
alignment devices* artifacts	variable	substitution
implant artifacts	up to 80%	MVXCT or substitution
contrast agents (not present during tx)	8%	second CT or substitution
metal implants	KV - > max # MV - volume dependent	$z \le 22$ - MVXCT z > 22 - substitution

*tabletops, fixation frames, biteblocks, fiducial screws, etc.

Uncertainties in Converting CT # to RLSP

PTCOG 2008

Uncertainties in Bolus Water Equivalent Thickness

- bolus material density (with lot sampling)
- bolus manufacturing
- bolus voids (with CT sampling) and/or contamination ± 0.5 mm
 - » will not be everywhere
- total bolus: $((0.4 + 0.3)^2 + 0.5^2)^{0.5}$

 $\pm 0.5\% \rightarrow 0.4 \text{ mm}$

± 0.3 mm

± 0.9 mm

Bolus Position with Respect to Patient (Lateral Set-up Uncertainty Effect on Range)

nominal patient/bolus alignment

3 mm patient/bolus miss-alignment

Moyers PTCOG 2008

Bolus Position with Respect to Patient (Lateral Set-up Uncertainty Effect on Range)

target DVH

normal tissue DVH

Summary of Typical Penetration Uncertainties

standard energy (or range) energy (or range) reproducibility bolus WET alignment devices*	± 0.6 mm ± 1.0 mm ± 0.9 mm ± 1.0 mm	<u>Range Uncert.</u> 2 mm	
CT# accuracy (after scaling) RLSP of tissues and devices energy dependence of RLSP CT# to RLSP (soft tissues only)	± 2.5% ± 1.6% ± 1.0% ± 1.5%	<u>CT Uncert.</u> 3.5%	
bolus position relative to patient heterogeneity straggling patient motion	variable variable variable	Planning bolus expansion multiple angles	

Desired Distribution

[90% - 10% dose shown in red]

Planned Nominal Distribution

[90% - 10% dose shown in red]

Might Get These Doses at These Locations

[90% - 10% dose shown in red]

Summary

- The shape of light ion beam depth dose distributions is determined by multiple processes.
- The term range can have different meanings.
- The depth of penetration of a light ion beam in a patient is uncertain due to several factors. Allowances must be made to account for these factors.